Test Protocol Future Aircraft Energy Management Systems

Version 0.1

Author: ISY Group Date: December 7, 2021

Status

Reviewed	ReviewerName	Date1
Approved	ApproverName	Date2

Course name:Reglerteknisk projektkursProject group:ISY groupCourse code:TSRT10Project:Future Aircraft Energy Management Systems

E-mail: Document responsible: Author's E-mail: Document name: emibo804@student.liu.se ISY Group

FileName.pdf

Project Identity

Group E-mail:	emibo804@student.liu.se
Homepage:	https://gitlab.liu.se/chrre97/student-project-energy-management
Orderer:	Alessandro Dell'Amico, Saab Aeronautics
	Phone: +46 ordernr, E-mail: alessandro.dellamico@liu.se
Customer:	Alessandro Dell'Amico, Linköping University, IEI.
	Phone: +46 customernr , E-mail: alessandro.dellamico@liu.se
Course Responsible:	Anders Hansson, Linköping University
	Phone: +46 13 281681, E-mail: hansson@isy.liu.se
Project Manager:	Emil Boström
Supervisor:	Kristoffer Ekberg, Linköping University, ISY.
	Phone: +46 advisornr , E-mail: kristoffer.ekberg@liu.se

Group Members

Name	Responsibility	E-mail
		(@student.liu.se)
Emil Boström	Project Leader	emibo804
Petrus Eriksson	Hardware Manager	peter792
Hugo Lundeberg	Document Manager	huglu683
Erik Börjesson	Test Leader	eribo610
Robin Helsing	Design Manager	robhe093
Emil Brunberg	Software & Integration	emibr702
	Manager	

Document History

Version	Date	Changes made	Sign	Reviewer
0.1	date1	First draft.	Sign1	Name1
0.2	date2	First revision	Sign2	Name2

FileName.pdf

Contents

1	Intr	oduction	1
2	Test	protocol	1
	2.1	Establishing communication with PSU	1
	2.2	Test plan for establishing communication with PCU	1
	2.3	Test plan for PSU-PCU configuration	2
	2.4	Performance testing of Keysight setup	2
3	Test	plan for Simulink models	3
	3.1	ME	3
	3.2	Generator	3
	3.3	SSPC	3
4	Test	plan for entire digital twin, offline.	4
5	Test	plan for entire digital twin and PSUs/PCUs	4
	5.1	Real-time testing	4
6	Ene	rgy management test	5
	6.1	SSPC and VMS voltage control	5
7	Test	plan for different failure modes	5
	7.1	Generator failure	5

1 Introduction

This document shows the results of the tests from the Test plan.

2 Test protocol

The following structure is used for the protocol.

Test number:

o de

The number of the test stated in the Test plan.

Description:

Description of the test performed.

Passed

Status of the test.

2.1 Establishing communication with PSU

Test number: 1

Description:

- 1. Power PSU on. Familiarize with PSU control panel.
- 2. Change voltage and max power output level via the PSU control panel.
- 3. Find IP-adress of one PSU.
- 4. Read voltage level from PSU via ethernet cable and Simulink interface. While changing voltage level on the PSU control panel.
- 5. Change PSU voltage level via Simulink.
- 6. Repeat step 1-5 for a second PSU separately.
- 7. Connect both (L and R system) PSUs to PC via a switch.
- 8. Read voltage level from both PSUs via ethernet cable and Simulink interface. While changing voltage levels on the PSUs control panel.
- 9. Change PSUs voltage levels via Simulink.

${\bf Status:} \ {\rm Passed}$

2.2 Test plan for establishing communication with PCU.

Test number: 2

Description:

- 1. Power PCU on. Familiarize with PCU control panel.
- 2. Change consumption setting.

- 3. Find IP-adress of one PCU.
- 4. Read consumption level from PCU via ethernet cable and Simulink interface. While changing consumption level on the PCU control panel.
- 5. Change PCU consumption level via Simulink.
- 6. Repeat step 1-5 for a second PCU separately.
- 7. Connect both (L and R system) PCUs to Simulink via a switch.
- 8. Read consumption levels from PSU via ethernet cable and Simulink interface. While changing consumption levels on the PCUs control panel.
- 9. Change PCUs levels via Simulink.

 ${\bf Status:}\ {\rm Not}\ {\rm passed}$

2.3 Test plan for PSU-PCU configuration

Test number: 3

Description:

- 1. Disconnect both PCU and PSU from switch/Simulink.
- 2. Connect power cable between one PSU and PCU.
- 3. Power on PSU and PCU, and set PSU voltage level and PCU consumption level.
- 4. Change consumption levels on PCU on PSU control panel.
- 5. Read consumption and voltage level from PCU and PSU via ethernet cable, switch and Simulink interface. While changing consumption level on the PCU control panel.
- 6. Change PCU consumption level via Simulink.
- 7. Repeat step 1-6 for the second PSU-PCU configuration separately.
- 8. Connect both (L and R system) PSU-PCU setups to Simulink.
- 9. Read consumption levels from (L and R system) PSU via ethernet cable and Simulink interface. While changing consumption levels on the PCUs control panel.
- 10. Change both (L and R system) PCUs levels via Simulink.

 ${\bf Status:}\ {\rm Not}\ {\rm passed}$

2.4 Performance testing of Keysight setup

Test number: 4

Description:

1. Establish the connection with PSU-PCU and PC via switch.

- $\mathbf{3}$
- 2. Through the PC make the PCU consume power from the PSU. This could for instance be interpreted as a step in Simulink via PC.
- 3. Since the information is send in series, a speed test of how fast the Keysight is able to handle command in series should be done.
 - Make two step responses which is performed at the same time. Step responses could for example be that the PCU should pull a set amount of power.

Status: Not passed

3 Test plan for Simulink models

3.1 ME

Test number: 5

Description:

1. Send in a throttle angle to the model and check that an appropriate speed output is achieved.

${\bf Status:} \ {\rm Passed}$

3.2 Generator

Test number: 6

1. Send in a rpm speed to the generator and check that the desired voltage is achieved

${\bf Status:} \ {\rm Passed}$

Test number: 7

1. Send in a varying speed to the generator and test that the voltage follows the variation

Status: Passed

3.3 SSPC

Test number: 8

1. Set the maximum current output to a component, example the radar, and test that the voltage is set to zero when the max current is sent.

${\bf Status:} \ {\rm Passed}$

Test number: 9

1. Set the maximum and dropout voltage levels and test that the output voltage is set to zero if any of the two is reached.

Status: Passed

Course name:	Reglerteknisk projektkurs	E-mail:	emibo804@student.liu.se
Project group:	ISY group	Document responsible:	ISY Group
Course code:	TSRT10	Author's E-mail:	
Project:	Future Aircraft Energy Management Systems	Document name:	FileName.pdf

4 Test plan for entire digital twin, offline.

Test number: 10

In Simulink environment:

- 1. Ensure correct input and outputs for all models.
- 2. Implement ISY- and IEI-models in one Simulink model.
- 3. Run with fixed values for the reference angle of the control surfaces.
- 4. Add slow sinus curve for reference angle in pith-control.

${\bf Status:} \ {\rm Passed}$

5 Test plan for entire digital twin and PSUs/PCUs

5.1 Real-time testing

Test number: 11

- 1. Connect the outputs of the Digital twin in Simulink to the correct PSUs/PCUs
- 2. With PSUs and PCUs running, run the pre-defined flight mission with the Digital twin in the Speedgoat real-time environment.

${\bf Status:} \ {\rm Passed}$

Test number : 12

1. Send a voltage and current command to the Keysight PSUs. Send a command to receive a measurement.

Status: Passed

Test number: 13

- 1. Perform a step from 330 V to 280 V, this is done by replacing the reference voltage in the CSD model to previously mentioned values in the step.
- 2. Perform a step from 200 V to 250 V, this is done by replacing the reference voltage in the CSD model to previously mentioned values in the step.

Status: Not passed

Test number: 14

- 1. Perform a step from 50 V to 29 V, this is done by replacing the reference voltage in the converter model to previously mentioned values in the step.
- 2. Perform a step from 18 V to 22 V, this is done by replacing the reference voltage in the converter model to previously mentioned values in the step.

${\bf Status:} \ {\rm Passed}$

Test number : 15

4

FileName.pdf

1. Send commands to two different Keysight boxes. One with constant voltage and one with constant current. Send commands regarding a voltage level and a current between them.

Status: Passed

6 Energy management test

6.1 SSPC and VMS voltage control

Test number: 16

1. Set the power consumption to a value too high for the generator to be able to generate.

Status: Passed

7 Test plan for different failure modes

7.1 Generator failure

Test number: 17

1. Set the generator status to off and test that the battery engages and supplies demanded current to the consumers.

 ${\bf Status:} \ {\rm Passed}$

FileName.pdf

5