
AGV Control Optimization with Machine Learning December 2021

Design specification

December 2021

Version 1.0

Status

Reviewed Björk, Rasmus 2021-10-15
Approved

TSRT10 CDIO Reglerteknik
Design specification

Toyota Material Handling
carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Project Identity

Group E-mail: carhe007@student.liu.se

Homepage: https://tsrt10.gitlab-pages.liu.se/2021/toyota/

Orderer: Anton Kullberg
Phone: Not applicable
E-mail: anton.kullberg@liu.se

Customer: Oskar Bergkvist (Toyota Material Handling)
Phone: Not applicable
E-mail: oskar.bergkvist@toyota-industries.eu

Supervisor: Hamed Haghshenas
Phone: Not applicable
E-mail: hamed.haghshenas@liu.se

Course Responsible: Daniel Axehill
Phone: Not applicable
E-mail: daniel.axehill@liu.se

Project members

Carl-Hampus Hedén Project manager carhe007@student.liu.se
Mahdi Najafi - mahna987@student.liu.se
Alfed Boman Head of design alfbo741@student.liu.se
Adam Kagebeck - adaka206@student.liu.se
Kalle Blomkvist Head of software karla625@student.liu.se
Rasmus Björk Head of documentation rasbj268@student.liu.se
Viktor Ekström Head of testing vikek514@student.liu.se

TSRT10 CDIO Reglerteknik
Design specification

Toyota Material Handling
carhe007@student.liu.se

carhe007@student.liu.se
https://tsrt10.gitlab-pages.liu.se/2021/toyota/
anton.kullberg@liu.se
oskar.bergkvist@toyota-industries.eu
carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

C O N T E N T S

1 Introduction 1
2 General description of the system 1
3 Controller 2

3.1 Interface . 2
3.2 PID . 2

4 Auto Tuner 3
4.1 Introduction to reinforcement learning . 5
4.2 Types of reinforcement learning . 6
4.3 Proximal Policy Optimization . 6
4.4 Deep Deterministic Policy Gradient . 8

5 Simulator 9
5.1 Overview . 9
5.2 User Interface . 10
5.3 AGV Model . 11
5.4 Scenario Generator . 14
5.5 Errors . 15

6 Evaluator 15
7 Observation Generator 16
References 17

TSRT10 CDIO Reglerteknik
Design specification

Toyota Material Handling
carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

D O C U M E N T H I S TO RY

Version Date Changes Made By Reviewed
0.1 2021-10-04 Draft of the design specification All Rasmus Björk
0.2 2021-10-11 Changes according to feedback from supervisor All Rasmus Björk
0.3 2021-10-15 Changes according to feedback from orderer All Rasmus Björk
1.0 2021-12-14 Final version All Mahdi Najafi

TSRT10 CDIO Reglerteknik
Design specification

Toyota Material Handling
carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

1 I N T R O D U C T I O N

Toyota M.H. have recently launched their fully autonomous vehicles after having previously used autonomous systems
on the existing trucks. The control system for the new AGV is developed by an external company but Toyota M.H.
have the ambition to, in the future, develop the controls for the vehicle in house. Based on a Master’s thesis work [1]
it has become apparent that tweaking the control system for different environments is excessively time consuming. As
the simulated working environment is sub-optimal to the actual working environment, the final tuning will be finished
on a customer to customer basis. Previously, the control system from the simulation has been tuned to an estimated
90% of the desired controller. The goal of this project is to increase the controller’s performance to 95%. Therefore,
Toyota M.H. in cooperation with Linköping University created this project to explore the possibilities of automating
the process by using machine learning to tune the controllers.

This document aims to describe the design of a system that can be used to evaluate if two different reinforcement
learning methods, Proximal Policy Optimisation (PPO) [2] and Deep Deterministic Policy Gradient (DDPG) [3], can
be used to automate the control tuning process. A general description of the system is given in Section 2, showing a
schematic view of the complete system together with a brief description of its subsystems. These subsystems are then
described further in the remaining sections starting from Section 3.

2 G E N E R A L D E S C R I P T I O N O F T H E S Y S T E M

The complete system consist of the following subsystems:

• A controller that is responsible to steer the AGV using a reference path and measurements of the AGV’s physical
states.

• A scenario generator that generates reference paths as well as parameters for various disturbances that will be
modeled in the controller- and AGV model component.

• An AGV model that model the physical behaviour of the AGV as closely as possible and output the physical
states and measurements of those states.

• An auto tuner that take observations and evaluations of the AGVs behaviour as input and outputs control param-
eters.

• An observation generator that generate these observations from the reference path, control signals and measure-
ments of the physical states

• An evaluator that generate evaluations of the AGVs behavior from the reference path and measurements of the
AGVs physical states.

Figure 1 shows a schematic of the complete system with their respective inputs and outputs.

TSRT10 CDIO Reglerteknik
Design specification

1
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Figure 1: A schematic view of the complete systems components together with their respective inputs and outputs. The red area
mark the area that would be implemented in the physical AGV. In that case the green area would be exchanged with the
physical AGV. The blue area marks the environment with which the auto-tuner interacts.

3 C O N T R O L L E R

A large group of controllers is compatible with the auto-tuners evaluated in this project. The first controller that will
be evaluated in this project is a PID controller and if time allows an LQ controller will also be evaluated.

3.1 Interface

Table 1 show the output of the controller component and Table 2 show the input to the controller component.

Table 1: The output signals of the controller
Data Bus Name Signal Name Data Type Unit

Control Signals
Left Motor Reference Velocity Float m/s
Right Motor Reference Velocity Float m/s

Table 2: The input signals of the controller
Data Bus Name Signal Name Data Type Unit

Control Signals
Heading velocity Float m/s
Heading angle Float rad (counter clockwise

positive)

3.2 PID

In this section the PID controller is described. The input- and output signals to the PID controller are presented in
Table 1 and 2. To determine which input signal that will control which output signal, an RGA-analysis [4] will be

TSRT10 CDIO Reglerteknik
Design specification

2
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

performed. Since the controller will have two input signals and two output signals, decoupled control will be used [4].
With the decoupled control, a change of variable will be performed where ỹ = W2y and ũ = W1

1 u. This results in a
transfer function

G̃ = W2(s)G(s)W1(s) (1)

that is as near a diagonal matrix as possible. Here, G is the original transfer function of the system. This will result in
a regulator described below.

u = −W1Fdiag
y W2y (2)

where Fdiag
y is the PID controller where each input will control each output separately. The matrices W1 and W2 will

be designed as:
W1 = G−1(0)

W2 = I

where I is the unit matrix and G−1 is the inverse of the kinematic model/system.

4 AU TO T U N E R

The Auto Tuner’s main task is to provide the control system with controller parameters using Machine Learning (ML)
algorithms and will consist of two major building blocks. The first block is a Reinforcement Learning (RL) algorithm
that uses rewards and observations to update the policy, and the other one is a policy function that calculates the AGV’s
controller gains. Figure 2 shows a schematic sketch of Auto Tuner’s structure.
In this project, two different RL algorithms will be used to construct the Auto Tuner. The first method is called Prox-
imal Policy Optimization (PPO) and the second method is Deep Deterministic Policy Gradient (DDPG). A detailed
description of the two algorithms is given in Section 4.3 and 4.4.

TSRT10 CDIO Reglerteknik
Design specification

3
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Figure 2: Schematic sketch of the Auto Tuner’s structure.

In Table 3, the Auto Tuner’s input and output signals are described.

Table 3: Input and output signals of the Auto Tuner.
Data Bus Name Signal Name Data Type Unit Signal Type

Observations
Position error in x-axis Float m Input
Position error in y-axis Float m Input
Heading error Float rad Input

Reward Reward Float - Input

PID Gains
Kp Float - Output
Ki Float - Output
Kd Float - Output

LQ Weight Matrices
Q Float - Output
R Float - Output

The machine learning algorithms used in the Auto Tuner can be represented as a function g : O× R→ P, where O
is the space of possible observation signals o, R is the space of possible reward signals r and P is the space of possible
control parameters p. For example could p ∈ P be a vector containing the controller parameters i.e. p = [Kp Ki Kd]
where Kp, Ki and Kd are conventional real valued PID parameters.

TSRT10 CDIO Reglerteknik
Design specification

4
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

In principle one could define the observation signals to be the current state errors et (e.g position error, velocity error
and heading error of the AGV) and define the reward signal to be for example the sum of these errors. In this way, the
Auto Tuner g would output the parameters p at each time step, thus implicitly forming a control signal

ut = Kpet + Kd
∂et

∂t
+ Ki

∫ t

0
et dt. (3)

The problem with this approach is that the Auto Tuner itself can be seen as a controller that sends a control signal.
In that case, p could as well enter the system after the PID controller as a final touch of the input signal u to the AGV.

To mitigate this problem, we instead propose two changes to the described observation and reward signals. As the
first change, the observation and reward signal should be depending on a time interval instead of a single time instance.
This could be realized in two different ways. The first way being to define the observation signal at time t as

ot = {et}t=t
t=t−T , (4)

where T is some constant. The second way being to define the observation signal as expected value and variance of
the observation signal in the first way. As the second change, the Auto Tuner could be defined to only output parameter
values at a certain time interval instead of each time step. The two extremes would then be to update the parameters
each time step and to only update the parameters once for each simulated scenario.

4.1 Introduction to reinforcement learning

Reinforcement learning can be described as a method to make an agent learn a specific task simply by trial and error
without any direct human interaction. This can be done in many different ways, but the core fundamentals are always
the same. An Agent interacts with an environment, in our case the environment will be a Simulink model, the agent
sends out an action to the environment and takes in the states and a reward that depends on how well the task was
solved. The Agent then updates its behavior to maximize its total cumulative reward.

Policy
The policy is a part of the agent and works as a rule book that decides what action a specific state s will result in. The
policy is denoted by µ if it’s deterministic and π if it is stochastic.

Reward and Value
The reward function r is what that tells the agent how the current policy is performing and it depends on the current
states, the actions taken and the next states. To design a good policy it’s not enough to only know the reward for a
certain action, instead we want to know the total expected reward when starting in a specific state s and following
policy π under a time interval. This function is called the value function Vπ(s).

States and Observations
A state s contains all the relevant information that fully describes the environment in each time step. An observation
o is the observable/measurable part of the state. If the state is fully observable, state and observation are the same,
otherwise the observation is just a partial description of the state and may omit some information. The agent updates
the policy based on the observation and the reward.

Action
The set of all the allowed actions in a specific environment is called action space. It can be either discrete or contin-
uous depending on the environment. The action is a decision made by the agent in order to maximize the future reward.

TSRT10 CDIO Reglerteknik
Design specification

5
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

A short description of all the key concepts in RL is given in Table 4.

Table 4: Key concepts in RL

Concept Symbol Description

Agent - The controller subject to the learning
Environment - The world that the agent lives in and interacts with
Action a Control signal(s) decided by the agent
State s Complete description of the state of the environment
Reward r A numerical value that represents how good the action taken by the agent is
Policy µ or π The strategy that the agent follows in order to make decisions
Observation o A partial description of a state

4.2 Types of reinforcement learning

There are two main types of reinforcement learning algorithms, model-based and model-free. What type of algorithm
that can be used depends on if the agent has access to a full model of the environment. If the agent has access to a full
model of the environment, meaning that the value function for starting in all possible states are known, no exploration
is needed and a model-free algorithm can be used. In our case a model free method will be used and therefore we
need to learn or in some way estimate the reward for a certain action. The two main ways of doing this are policy
optimization and Q-learning.

A policy optimization method is usually an on-policy method, which means that each update only uses data col-
lected while acting according to the most recent version of the policy. It is usually denoted as πθ(s|a) and tries to
optimize the parameters θ. It also uses an approximator Vφ(s) to estimate the value function Vπ(s) which it uses to
update the policy π. Methods based on Q-learning are usually an off-policy method, meaning that each update can use
data collected at any point during training, the opposite of the policy optimization. It uses the approximator Qθ(s, a)
to learn the optimal action-value function Q∗(s, a) and is based on the Bellman equation (see Section 4.4).

4.3 Proximal Policy Optimization

PPO is a policy gradient method that can be used for environments with either discrete or continuous action space
[2]. The method is based on optimizing a parametrized policy with respect to the long-term cumulative reward. This
project will use a variant of PPO called PPO-Clip. The main idea in PPO-Clip is to avoid large changes between the
old policy and the new one when performing a policy update. This is achieved by introducing a specialized clipping
in the objective function which prevent the new policy to get too far from the old one. The algorithm is described in
detail below.

Let Rt(θ) denote the ratio between the new policy’s and the old policy’s PDFs:

Rt(θ) =
πθ(at|st)

πθk (at|st)
(5)

TSRT10 CDIO Reglerteknik
Design specification

6
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

The objective of the optimization problem that PPO-Clip solves can then be formulated as follows:

LCLIP
k (θ) = E

[
T

∑
t=1

(
min

(
Rt(θ)A

πθk
t , clip(Rt(θ), 1− ε, 1 + ε)A

πθk
t

))]
(6)

where ε is a tunable hyperparameter and clip is a function that keeps the probability ratio Rt(θ) within the interval
[1 − ε, 1 + ε] by clipping it at the interval’s upper and lower bounds. And A

πθk
t denotes the advantage function

corresponding to policy πθk and is defined by:

A
πθk
t (st, at) = Qπθk (st, at)−V

πθk
Φ (st) (7)

where V
πθk
Φ (st) is the on-policy value function, parametrized by Φ, which gives the expected return if one starts in

state st and always acts according to policy πθk . Qπθk (st, at) is the on-policy action-value function which gives the
expected return if one start in state st, takes a random action at and acts according to policy πθk forever after. The
problem with this approach is that two value functions are needed which increases the complexity of the algorithm. A
common way to overcome this problem is to estimate the advantage function as follows:

Â
πθk
t (st, at) = rt + γV

πθk
Φ (st+1)−V

πθk
Φ (st) (8)

where rt is the reward in time t, and γ is the discount factor which determines how much weight is put on the future
and immediate rewards.

Finally, PPO updates the policy by maximizing the objective function, usually by taking minibatches of Stochastic
Gradient Descent (SGD) according to:

θk+1 = arg max
θ

(
LCLIP

k (θ)
)

(9)

Pseudo-code for the implementation of the PPO-Clip is given below.

Algorithm 1 PPO-Clip [2]

Input : Initial policy parameters θ0 and value function parameters Φ0
For k = 0,1,2,... do

Collect set of trajectories Dk = (τi) by running policy πk = π(θk)
Compute reward-to-go R̂t
Compute advantage estimates Ât
Update the policy by maximizing the objective function θk+1 :

θk+1 = arg maxθ
1
|Dk |T ∑τ∈Dk

LCLIP
k (θ)

Fit the value function VΦ(s) by regression on mean squared error:
Φk+1 = arg minΦ

1
|Dk |T ∑τ∈Dk ∑T

t=0 min
(
VΦ(s)− R̂t

)
End f or

TSRT10 CDIO Reglerteknik
Design specification

7
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

4.4 Deep Deterministic Policy Gradient

The DDPG-algorithm is a hybrid of Q-learning and policy gradient and is used for learning in continuous action spaces.
The DDPG-algorithm consists of learning two parts which are a Q-function and a policy. The DDPG agent is of the
actor-critic type meaning that the algorithm simultaneously learns the policy and value function. The actor, µ(s|θµ),
is a policy network that takes in observations and directly returns the action that gives the highest long-term reward,
making the policy deterministic. The critic, Q(s, a|θQ), is a Q-value network that utilizes observations and actions as
inputs and returns the expectation of long-term reward (Q-value). To learn the Q-function, it uses off-policy data and
the Bellman equation shown in equation (10). Using off-policy data means that computations can be made without
considering how the data was generated. The Bellman equation describes an optimal action-value function Q∗(s, a).
It is also possible to describe a mean-square error equation of the Bellman equation that computes how well a neural
network, Qφ(s, a), with network parameters, φ, satisfies the Bellman equation as shown in equation (11).

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a′
Q∗(s′, a′)

]
(10)

L(φ, D) = E
(s,a,r,s′)∼D

[(
Qφ(s, a)−

(
r + γmax

a′
Qφ(s′, a′)

))]
(11)

where D is a set of tuples of the state, action, reward and next state (s, a, r, s′) and γ is the discount factor that
decides the prioritization between immediate and future rewards.

DDPG-algorithm also makes use of target networks that are time-delayed copies of their original networks. If tar-
get networks are not used the agent is susceptible to divergence since the network’s equations becomes independent
on the values calculated by itself, hence the target networks increases stability. Both the actor and the critic each has
a target network that works by periodically setting the actor/critic parameters to the latest values which are used to
calculate the next state’s Q-value. The actor and critic are denoted with Q′ and µ′ respectively. The target networks
has "soft" updates, meaning that only a fraction (1− τ) of the weights, θ, are transferred, based on main networks as
shown in equation (12) and (13).

θQ′ ← τθQ + (1− τ)Q′ (12)

θµ′ ← τθµ + (1− τ)µ′ (13)

where (1− τ) << 1.

Moreover the training process for the deep neural network can be quite sensitive. This is solved by adding a re-
play buffer consisting of a set of tuples D. The replay buffer samples experiences in order to update neural network
parameters. The size of the buffer affects the algorithms stability. If it is too small the algorithm will overfit to the
latest data and if it is too large it will slow down the learning process. The last parts needed to be defined for training
the model are the network’s updates for the actor and the critic. The Q-values for the next state are computed by a
mean square loss function between the original and updated Q-values as shown in equation (14). The purpose of the
policy function is to maximize the expected return, J. The expected return is simply calculated by the estimate of

TSRT10 CDIO Reglerteknik
Design specification

8
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Q(s, a). Maximizing the return is done by taking the derivative of the estimate w.r.t. the policy parameter, θµ. The
fact that a replay buffer is used also needs to be considered which all will result in equation (15).

L =
1
N ∑

i

(
yi −Q(si, ai|θQ)

)2
(14)

where yi is calculated from the Bellman equation.

∇θµ J ≈ 1
N ∑

i

(
∇aQ(s, a|θQ)|s=si ,a=µ(si)

∇θµµ(s|θµ)|si

)
(15)

In the pseudo-code below the process for the DDPG agent is described.

Algorithm 2 DDPG Algorithm

Randomly initialize critic network Q(s, a|θQ) and actor µ(s|θµ) with weights θQ and θµ

Initialize target network Q′ and µ′ with weights θQ′ ← θQ , θµ′ ← θµ

Initialize replay bufferR
for For episode=1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t = 1, T do

Select action at = µ(st|θµ) +Nt according to the current policy and exploration noise
Execute action at and observe reward rt and observe new state st+1
Store transition (st, at, rt, st+1) inR
Sample a random minibatch of N transitions (si, ai, ri, si+1) fromR
Set yi = ri + γQ′(si+1, µ′(si+1|θµ′)|θQ′)
Update critic by minimizing the loss: L = 1

N Σi(yi −Q(si, ai|θQ))2

Update the actor policy using the sampled policy gradient:
∇θµ J ≈ 1

N ∑i∇aQ(s, a|θQ)|s=si ,a=µ(si)
∇θµµ(s|θµ)|si

Update the target networks:
θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

end for
end for

5 S I M U L ATO R

Below is a description of the simulator.

5.1 Overview

The simulator consist of the AGV model and the scenario generator. The AGV model is responsible for the simulation
of the physical system and to generate system states and measurements of these states given control inputs. The
scenario generator provides the system with a path and various disturbances. A blueprint of the simulated system
integrated with the rest of the system can be viewed below.

TSRT10 CDIO Reglerteknik
Design specification

9
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Figure 3: Blueprint for the simulator’s interaction with the rest of the system

The simulation process starts with the scenario generator which returns to the simulation with a map of the environ-
ment, i.e. what path to take, and with various disturbances. The path is created in the "Map of environment" block and
the disturbances in the "System disturbances" and "Measurement noise" signals. A path-planner then provides the con-
troller with a reference signal from the location of the AGV and the environment. This is done in the "Path-planner"
block. The controller, the block "F", then controls the AGV model, represented by the block "G", by controlling it
towards the reference signal. The performance and observations of its control is later used as an evaluation by the
"Performance evaluation" block to tune the controller using ML. The performance can be viewed as a data-file and as
a graphical interface.

5.2 User Interface

In this section the user interface of the simulation is described.

5.2.1 GUI

Figure 4 shows an outline for the GUI of the simulator.

TSRT10 CDIO Reglerteknik
Design specification

10
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Figure 4: GUI

Generate path allows the user to press the large screen in order to choose locations between which a path will be
randomly constructed. The locations are created in Cartesian coordinates, 100x100, and are sent to the Python-script
which generates the paths. The environment is free of obstacles as Toyota M.H. only wants us to follow a path. As
such, the path can be regarded as a path that avoids obstacles, however these obstacles are non-existant. How the
path is created is explained in Section 4.6. Randomize disturbances enacts random disturbances and the strength of
said disturbances. View data opens another window where the user can view important data from the scenario and
the simulation. Generate multiple scenarios does not display any visualizations but it provides data in the View data
window.

5.3 AGV Model

The present section describes how the kinematics and dynamics of the AGV will be modelled and implemented in
the simulator. The AGV model consists of three main components. The first component is the kinematic model that
calculate the position and heading of the AGV from the left and right wheel speed. The second component is the
measurement model that adds measurement noise to the position, heading and wheel speed of the AGV. The third
component is the dynamical model component that calculates the actual wheel speed of the AGV given the reference
wheel speed. An overview of the AGV model is shown in Figure 5.

TSRT10 CDIO Reglerteknik
Design specification

11
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Figure 5: Structure of the AGV System Model

5.3.1 Interface

The AGV model component of the simulator takes the control signal sent from the controller as input and outputs the
system states and measurements of these states. Table 5 shows the input signals to the AGV model component and
Table 6 shows the output signals of the AGV model component.

Table 5: The input signals to the AGV Model component of the simulator.
Data Bus Name Signal Name Data Type Unit

Control Signals
Left Wheel Speed Reference (vre f

r) Float m/s
Right Wheel Speed Reference (vre f

l) Float m/s

Disturbances
Dynamical Model Parameters Float

vector
m/s

Measurement Parameters Float
vector

m/s

5.3.2 Kinematic model

The kinematic model of the AGV is presented below (16-18). The input signals to the model are the velocities of the
right wheel (vr) and the left wheel (vl). The output signals to the model are the x-position (x), the y-position (y) and
the heading (θ).

TSRT10 CDIO Reglerteknik
Design specification

12
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

Table 6: The output signals of the AGV Model component of the simulator.
Data Bus Name Signal Name Data Type Unit

System States

Left Wheel Speed (vl) Float m/s
Right Wheel Speed (vr) Float m/s
x-axis Coordinate (x) Float m
y-axis Coordinate (y) Float m
Heading (θ) Float rad (Counter clockwise

positive)

Measurements

Left Wheel Speed Measurement (vmes
l) Float m/s

Right Wheel Speed Measurement (vmes
r) Float m/s

x-axis Coordinate Measurement (xmes) Float m
y-axis Coordinate Measurement (ymes) Float m
Heading Measurement(θmes) Float rad

ẋ
ẏ
θ̇

 =

cos θ 0
sin θ 0

0 1

 [v
ω

]
(16)

v =
vr + vl

2
(17)

ω =
vr − vl

L
(18)

where L is the length of the wheel axle, v is the AGV aligned velocity and ω is the angular rate of the vehicle.

5.3.3 Dynamical Model

The dynamics model will output the reference wheel speed with an optional time delay. If time allows, this will be
extended to model the motors and wheels of the AGV. The dynamical model takes the measured wheel speed as input
signal. This is because the real AGV controls each wheel with a PID controller (not to be confused by the controller
described in Section 3), that uses the difference between measured wheel speed and reference wheel speed as reference
signal [1].

5.3.4 Measurements

The measurements are calculated from the simulated system states by adding additive Gaussian noise to the system
states (see Table 6). If project resources allow other variations of noise can be tested as well. This could for example
be done by estimating the noise of the system states from data of a real AGV that is not moving.

5.3.5 Validation

By using the speeds from the log file provided by Toyota M.H. we can measure how much our model outputs differ
from the log file. This will allow us to get an understand of how accurate our model is.

TSRT10 CDIO Reglerteknik
Design specification

13
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

5.4 Scenario Generator

The purpose of the scenario generator is to generate a map of the environment and various disturbances that is used by
the simulator during simulation and during training of the auto-tuner. Table 7 lists the data contained in each point of
the map.

Table 7: The data contained in each trajectory point of the trajectory.
Signal Name Data Type Unit

Unique id Integer N.A.
Global x-coordinate Float m
Global y-coordinate Float m
Global Frame Heading Float 100 000 * rad (Counter

Clockwise Positive)
Speed Float mm/s

The scenario generator is built on two modules: a path generator and a disturbance generator. The path generator
uses RRT (rapidly-exploring random tree) to generate a path between a chosen number of point inside the virtual
environment. RRT is a path-planning algorithm. The algorithm can be viewed in Algorithm 3.

Algorithm 3 RRT [5]

1: T .init(xinit)
2: for k=1 to K do
3: xrand ← RANDOM_STATE();
4: xnear ← NEAREST_NEIGHTBOR(xrand, T);
5: xnew ← STEER(xnear, xrand, ∆x);
6: T .add_vertex(xnew);
7: T .add_edge(xnear, xnew);
8: if xnew = xgoal;
9: end

10: end for
11: Return T

The algorithm works as A random node is selected in the generated environment, which in our case is a 100x100
grid. The algorithm will iterate K times. Afterwards, the nearest neighbor to the random node is selected and the
graph is steered towards it; wherever the graph lands is the new node. The two nodes are then connected and, unless
the new node is the goal node, the process is repeated. The algorithm either ends when it has iterated K times or when
the goal has been reached. The path is constructed of arrays which contain the location id, x- and y-coordinates, the
orientation angle, and the velocity. The disturbance generator generates random disturbances: random in the sense
that the strength and which disturbances are active varies.

5.4.1 Feasibility

The generated scenario needs to be feasible in the sense that the AGV should be capable of executing the scenario
without exceeding its physical capabilities. More precisely this means that

TSRT10 CDIO Reglerteknik
Design specification

14
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

• The required acceleration needed for the AGV to move between two consecutive trajectory points should be less
than the maximal acceleration of the AGV.

• The required turning rate needed for the AGV to move between two consecutive trajectory points should be less
than the maximal turning rate of the AGV.

5.4.2 Path-planner

The AGV will have a very basic path-planner; the path-planner will always steer the AGV to the nearest point on the
path in relation to the AGV’s position.

5.5 Errors

Errors are modeled as white-noise in a vector form allowing us to test the errors independently of each other. Place-
ments of the errors in the model can be seen in Figure 3. A time-delay will be tested by introducing a time-delay block
in the simulink model. One before F and one before G in Figure 3

6 E VA L UATO R

In this section the evaluator is described. The purpose of the evaluator component is to output the reward signal that is
needed to train the auto-tuner (see Section 4.1).

One simple way to calculate a reward signal is as a sum of the closest distance between the reference trajectory and
the position of the AGV from the time of the previous action to the time of the current action. This will be used as the
baseline reward signal, but other reward functions might be implemented and tested if project resources allow.

6.0.1 Interface

Table 8 shows the input to the evaluator component and Table 9 show the output to the evaluator component.

Table 8: The input signals of the evaluator component of the simulator.
Data Bus Name Signal Name Data Type Unit

Path r float -
Measurements y float -
System States x float -

Table 9: The output signals of the evaluator component of the simulator.
Data Bus Name Signal Name Data Type Unit

Reward Signal Reward Signal Float N.A

TSRT10 CDIO Reglerteknik
Design specification

15
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

7 O B S E RVAT I O N G E N E R ATO R

In this section the observation generator is described. The purpose of the observation generator is to generate the
observation signal to the auto-tuner (see Section 4.1).

In accordance with the discussion in Section 4, the observation signal could for example be sequences of the mea-
surements, control signals and the reference trajectory over a given time. Another alternative could be rolling arith-
metic means and variances of those sequences. Experimentation and evaluation of different types of observation
signals will be performed during the project within the limitations of project resources.

7.0.1 Interface

Table 10 shows the input to the observation generator component and Table 11 shows the output to the observation
generator component.

Table 10: The input signals of the observation component of the simulator.
Data Bus Name Signal Name Data Type Unit

Path r float -
Measurements y float -
Control Signal u float -

Table 11: The output signals of the observation component of the simulator.
Data Bus Name Signal Name Data Type Unit

Observation Signal Observations float -

TSRT10 CDIO Reglerteknik
Design specification

16
Toyota Material Handling

carhe007@student.liu.se

carhe007@student.liu.se

AGV Control Optimization with Machine Learning December 2021

R E F E R E N C E S

[1] A. Holgersson and J. Gustafsson, “Trajectory tracking for automated guided vehicle,” 2021.

[2] OpenAI, “Proximal policy optimization,” 2018, accessed: 2021-10-04. [Online]. Available: https:
//spinningup.openai.com/en/latest/algorithms/ppo.html

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
with deep reinforcement learning,” 2019.

[4] T. Glad and L. Ljung, Reglerteori: flervariabla och olinjara metoder. Studentlitteratur, 2003.

[5] M. LaValle S., “Rapidly-exploring random trees: A new tool for path planning,” 1998.

[6] OpenAI, “Key concepts in rl,” 2018, accessed: 2021-10-06. [Online]. Available: https://spinningup.openai.com/
en/latest/spinningup/rl_intro.html#

TSRT10 CDIO Reglerteknik
Design specification

17
Toyota Material Handling

carhe007@student.liu.se

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#
carhe007@student.liu.se

	1 Introduction
	2 General description of the system
	3 Controller
	3.1 Interface
	3.2 PID

	4 Auto Tuner
	4.1 Introduction to reinforcement learning
	4.2 Types of reinforcement learning
	4.3 Proximal Policy Optimization
	4.4 Deep Deterministic Policy Gradient

	5 Simulator
	5.1 Overview
	5.2 User Interface
	5.3 AGV Model
	5.4 Scenario Generator
	5.5 Errors

	6 Evaluator
	7 Observation Generator
	References

