
AGV Machine Learning December 2021

Technical Documentation
AGV Machine Learning

December 2021

Version 1.0

Status

Reviewed Björk, Rasmus 2021-12-13
Approved

TSRT10 CDIO Reglerteknik
Technical Documentation

AGV Machine Learning
carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Project Identity

Group E-mail: carhe007@student.liu.se

Homepage: https://tsrt10.gitlab-pages.liu.se/2021/toyota/

Orderer: Anton Kullberg
Phone: Not applicable
E-mail: anton.kullberg@liu.se

Customer: Oskar Bergkvist (Toyota Material Handling)
Phone: Not applicable
E-mail: oskar.bergkvist@toyota-industries.eu

Supervisor: Hamed Haghshenas
Phone: Not applicable
E-mail: hamed.haghshenas@liu.se

Course Responsible: Daniel Axehill
Phone: Not applicable
E-mail: daniel.axehill@liu.se

Project members

Name Post E-mail
Carl-Hampus Hedén Project manager carhe007@student.liu.se
Mahdi Najafi - mahna987@student.liu.se
Alfred Boman Head of design alfbo741@student.liu.se
Adam Kagebeck - adaka206@student.liu.se
Kalle Blomkvist Head of software karla625@student.liu.se
Rasmus Björk Head of documentation rasbj268@student.liu.se
Viktor Ekström Head of testing vikek514@student.liu.se

TSRT10 CDIO Reglerteknik
Technical Documentation

AGV Machine Learning
carhe007@student.liu.se

carhe007@student.liu.se
https://tsrt10.gitlab-pages.liu.se/2021/toyota/
anton.kullberg@liu.se
oskar.bergkvist@toyota-industries.eu
carhe007@student.liu.se

AGV Machine Learning December 2021

C O N T E N T S

1 Introduction 1
2 Overview 1
3 Theory 1

3.1 Introduction to Reinforcement Learning . 1
3.2 Types of Reinforcement Learning . 2
3.3 Proximal Policy Optimization (PPO) . 3
3.4 Deep Deterministic Policy Gradient (DDPG) . 4
3.5 Black-Box Model . 6

3.5.1 Output Error . 6
3.5.2 ARMAX . 7
3.5.3 ARX . 7

3.6 Three Parameter Model . 7
3.7 RGA Analysis . 7
3.8 Decoupled control . 7
3.9 Path Generator . 8

3.9.1 Motion planning . 8
3.9.2 RRT . 8

4 System Overview 9
5 Simulator 10

5.1 System model . 11
5.1.1 Electrical motor . 12
5.1.2 Disturbance implementation in the electrical motor . 15
5.1.3 Kinematic model . 16

5.2 System Validation . 18
5.2.1 Measurements . 20

5.3 Path- and Reference Generation . 20
5.3.1 Path-generation . 20

5.3.1.1 RRT . 20
5.3.1.2 Spline Path . 21

5.3.2 Reference Generation . 21
5.4 Error Model . 22

6 Controllers 23
6.1 Project Controller . 23
6.2 Toyota Reference Controller . 24

7 Observation Generator 25
8 Evaluator 26

8.1 Linear Reward . 26
8.2 Linear Exponential Reward . 26

9 Auto tuner 27
9.0.1 Static Agent . 29

9.1 Validation Methodology . 29
10 Visualization 29

TSRT10 CDIO Reglerteknik
Technical Documentation

AGV Machine Learning
carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

10.1 Visualisations . 29
11 Initialization 32
12 Results 33

12.1 Training . 33
12.1.1 Linear Reward . 33
12.1.2 Linear Exponential Reward . 35

12.2 Performance . 37
12.2.1 Static Agent . 37
12.2.2 PPO Agent . 38
12.2.3 DDPG Agent . 41

12.3 Different Environments . 41
13 Discussion 45

13.1 Post-development . 46
13.1.1 Path-following . 46
13.1.2 Physical Electrical Motor Development . 46
13.1.3 Machine Learning Methods . 46
13.1.4 Machine Learning Implementation . 46
13.1.5 Disturbances . 46
13.1.6 Real world implementation . 47

14 Conclusion 47
References 48

TSRT10 CDIO Reglerteknik
Technical Documentation

AGV Machine Learning
carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

D O C U M E N T H I S TO RY

Version Date Changes Made By Reviewed
0.1 2021-12-01 Draft All Rasmus Björk
0.2 2021-12-03 Feedback from project advisor All Rasmus Björk
0.3 2021-12-13 Feedback from project orderer All Rasmus Björk
1.0 2021-12-14 Final version All Mahdi Najafi

TSRT10 CDIO Reglerteknik
Technical Documentation

AGV Machine Learning
carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

1 I N T R O D U C T I O N

The project group have created a machine-learning-based approach for regulating the PID parameters of a controller
used to control a modelled Toyota automated guided vehicle (AGV). This technical documentation describes how the
project is constructed. The AGV is built on three main modules: a simulator, a controller, and a machine learning based
parameter tuner. The modules arae explained in such a way as to be understandable by basic previous knowledge of the
area. This technical documentation is part of the course TSRT10 - Reglerteknik projektkurs at Linköping University
which has been created in collaboration with Toyota Material Handling. The basis of the project is an enquiry by
Toyota Material Handling to investigate whether machine learning algorithms can be used to tune a PID controller.
This document contains a technical description of the system description designed in [1].

2 OV E RV I E W

The product is a Toyota based AGV whose mission is to learn control parameters from various environments [2].
The technical documentation is structured in the following way. Firstly, various theoretical approaches used in the
construction of the system is explained in Section 3. Note that the theory section is fairly advanced and that it might
not be necessary for the user to understand the theory in order to grasp the main scope of the project and to use the
system. Secondly, the implementation of the system is described starting with an overview in Section 4 followed by
in depth descriptions of each major system component in Sections 5-9. Section 10 describes how the results from the
system is visualized in the GUI. For an in depth user manual and description of the GUI, see [3]. Section 12 present
the results from using the system followed by a discussion in Section 13 and conclusions in Section 14.

3 T H E O RY

In this section, the theories behind the construction of the product will be shown.

3.1 Introduction to Reinforcement Learning

Reinforcement learning can be described as a method to make an agent learn a specific task simply by trial and error
without any direct human interaction. This can be done in many different ways, but the core fundamentals are always
the same. An Agent interacts with an environment, in our case the environment will be a Simulink model, the agent
sends out an action to the environment and takes in the states and a reward that depends on how well the task was
solved. The Agent then updates its behavior to maximize its total cumulative reward. In this project the agent is built
from reinforcement learning methods that utilises an actor-critic structure that will be discussed further in coming
sections.

Policy
The policy is a part of the agent and works as a rule book that decides what action is to be taken in a specific state. The
policy is denoted by µ if it’s deterministic and π if it is stochastic.

Reward and Value
The reward function r is what that tells the agent how the current policy is performing and it depends on the current

TSRT10 CDIO Reglerteknik
Technical Documentation

1
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

states, the actions taken and the next states. To design a good policy it’s not enough to only know the reward for a
certain action, instead we want to know the total expected reward when starting in a specific state s and following
policy π under a time interval. The total expected reward is captured by the value function Vπpsq.

States and Observations
A state s contains all the relevant information that fully describes the environment in each time step. An observation
o is the observable/measurable part of the state. If the state is fully observable, state and observation are the same,
otherwise the observation is just a partial description of the state and may omit some information. The agent updates
the policy based on the observation and the reward.

Action
The set of all the allowed actions in a specific environment is called action space. It can be either discrete or contin-
uous depending on the environment. The action is a decision made by the agent in order to maximize the future reward.

Learning Rate
Learning rate determines how fast the agent learns the optimal policy. It controls the step size taken at each policy
update in the direction towards the optimal policy. If the learning rate is too high, the updates would become too large
and the agent would jump over minima or maxima and if it is too low, the training would take much longer time.

A short description of all the key concepts in RL is given in Table 1.

Table 1: Key concepts in RL

Concept Symbol Description

Agent - The controller subject to the learning
Environment - The world that the agent lives in and interacts with
Action a Control signal(s) decided by the agent
State s Complete description of the state of the environment
Reward r A numerical value that represents how good the action taken by the agent is
Policy µ or π The strategy that the agent follows in order to make decisions
Observation o A partial description of a state

3.2 Types of Reinforcement Learning

There are two main types of reinforcement learning algorithms, model-based and model-free. What type of algorithm
that can be used depends on if the agent has access to a full model of the environment. If the agent has access to a full
model of the environment, meaning that the value function for starting in all possible states are known, no exploration
is needed and a model-based algorithm can be used. In our case a model free method will be used and therefore we
need to learn or in some way estimate the reward for a certain action. The two main ways of doing this are policy
optimization and Q-learning.

A policy optimization method is usually an on-policy method, which means that each update only uses data col-
lected while acting according to the most recent version of the policy. It is usually denoted as πθps|aq and tries to
optimize the parameters θ. It also uses an approximator Vϕpsq to estimate the value function Vπpsq which it uses to
update the policy π. Methods based on Q-learning are usually an off-policy method, meaning that each update can use

TSRT10 CDIO Reglerteknik
Technical Documentation

2
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

data collected at any point during training, the opposite of the policy optimization. It uses the approximator Qθps, aq

to learn the optimal action-value function Q˚ps, aq and is based on the Bellman equation (see Section 3.4).

3.3 Proximal Policy Optimization (PPO)

The first machine learning method is called Proximal Policy Optimization (PPO). It is a policy gradient method that
can be used for environments with either discrete or continuous action space [4]. The method is based on optimizing
a parametrized policy with respect to the long-term cumulative reward. This project will use a variant of PPO called
PPO-Clip. The main idea in PPO-Clip is to avoid large changes between the old policy and the new policy when
performing a policy update. This is achieved by introducing a specialized clipping in the objective function which
prevents the new policy to get too far from the old one [5]. The algorithm is described in detail below.

Let Rtpθq denote the ratio between the new policy’s and the old policy’s PDFs at time t:

Rtpθq “
πθpat|stq

πθk pat|stq
(1)

PPO-Clip solves an optimization problem where the loss function is formulated as follows:

LCLIP
t pθq “ min

´

RtpθqA
πθk
t , clippRtpθq, 1 ´ ϵ, 1 ` ϵqA

πθk
t

¯

(2)

where ϵ is a tuning parameter and clip is a function that keeps the probability ratio Rtpθq within the interval [1 ´ ϵ, 1 `

ϵ] by clipping it at the interval’s upper and lower bounds. Further A
πθk
t denotes the advantage function corresponding

to policy πθk and is defined as:

A
πθk
t pst, atq “ Qπθk pst, atq ´ V

πθk
Φ pstq (3)

where V
πθk
Φ pstq is the on-policy value function, parametrized by Φ, which returns the expected reward if one starts in

state st and always acts according to policy πθk . The on-policy action-value function Qπθk pst, atq returns the expected
reward if one start in state st, takes a random action at and acts according to policy πθk forever after. The problem
with this approach is that two value functions are needed which increases the complexity of the algorithm. A common
way to overcome this problem is to estimate the advantage function as follows:

Â
πθk
t pst, atq “ rt ` γV

πθk
Φ pst`1q ´ V

πθk
Φ pstq (4)

where rt is the reward in time t and γ is the discount factor which determines how much weight is put on the immediate
and future rewards.

Finally, PPO-clip updates the policy by maximizing the objective function, usually by taking minibatches of Stochastic
Gradient Ascent (SGA) according to:

θk`1 “ arg max
θ

E
´

LCLIP
k pθq

¯

(5)

where E denotes the empirical average over a finite batch of samples. The output of the PPO is a stochastic policy πθ

represented by its mean and standard deviation.

TSRT10 CDIO Reglerteknik
Technical Documentation

3
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

The implementation of the PPO-Clip is summarized in Algorithm 1

Algorithm 1 PPO-Clip [4]

Input : Initial policy parameters θ0 and value function parameters Φ0.
For k = 0, 1, 2,... do

Run the policy πk = πpθkq in the environment T times.
Compute reward-to-go R1, ..., RT .
Compute advantage estimates Â1, ..., ÂT .
Update the policy by maximizing the objective function LCLIP

k pθq

θk`1 Ð arg maxθ
1
T

řt“T
t“0 LCLIP

t pθq

typically via stochastic gradient ascent with Adam.
Fit the value function VΦpsq by regression on mean squared error:

Φk`1 Ð arg minΦ
1
T

řT
t“0 pVΦpstq ´ Rtq

2

typically via some gradient descent algorithm.
End f or

3.4 Deep Deterministic Policy Gradient (DDPG)

The second method is deep deterministic policy gradient (DDPG). This algorithm is a hybrid of Q-learning and policy
gradient and is used for learning in continuous action spaces [6]. The DDPG-algorithm consists of learning two
parts which are a Q-function and a policy. The DDPG agent is of the actor-critic type meaning that the algorithm
simultaneously learns the policy and value function. The actor, µps|θµq, is a policy network that takes in observations
and directly returns the action that gives the highest long-term reward, making the policy deterministic. The critic,
Qps, a|θQq, is a Q-value network that utilizes observations and actions as inputs and returns the expectation of long-
term reward (Q-value). To learn the Q-function, it uses off-policy data and the Bellman equation shown in Equation
6. Using off-policy data means that computations can be made without considering how the data was generated. The
Bellman equation describes an optimal action-value function Q˚ps, aq. It is also possible to describe a mean-square
error equation of the Bellman equation that computes how well a neural network, Qϕps, aq, with network parameters,
ϕ, satisfies the Bellman equation as shown in Equation 7.

Q˚ps, aq “ E
s1„P

„

rps, aq ` γmax
a1

Q˚ps1, a1q

ȷ

(6)

Lpϕ, Dq “ E
ps,a,r,s1q„D

«

´

Qϕps, aq ´
`

r ` γmax
a1

Qϕps1, a1q
˘

¯

ff

(7)

where D is a set of tuples of the state, action, reward and next state ps, a, r, s1q and γ is the discount factor that decides
the prioritization between immediate and future rewards.

TSRT10 CDIO Reglerteknik
Technical Documentation

4
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

DDPG-algorithm also makes use of target networks that are time-delayed copies of their original networks. If tar-
get networks are not used the agent is susceptible to divergence since the network’s equations becomes independent
on the values calculated by itself, hence the target networks increases stability. Both the actor and the critic each has
a target network that works by periodically setting the actor/critic parameters to the latest values which are used to
calculate the next state’s Q-value. The actor and critic are denoted with Q1 and µ1 respectively. The target networks
has "soft" updates, meaning that only a fraction p1 ´ τq of the weights, θ, are transferred, based on main networks as
shown in Equation 8 and 9.

θQ1

Ð τθQ ` p1 ´ τqQ1

(8)

θµ1

Ð τθµ ` p1 ´ τqµ1

(9)

where (1-τq ăă 1.

Moreover the training process for the deep neural network can be quite sensitive. This is solved by adding a re-
play buffer consisting of a set of tuples D. The replay buffer samples experiences in order to update neural network
parameters. The size of the buffer affects the algorithms stability. If it is too small the algorithm will overfit to the
latest data and if it is too large it will slow down the learning process. The last parts needed to be defined for training
the model are the network’s updates for the actor and the critic. The Q-values for the next state are computed by a
mean square loss function between the original and updated Q-values as shown in Equation 10. The purpose of the
policy function is to maximize the expected return, J. The expected return is simply calculated by the estimate of
Qps, aq. Maximizing the return is done by taking the derivative of the estimate w.r.t. the policy parameter, θµ. The
fact that a replay buffer is used also needs to be considered which all will result in Equation 11.

L “
1
N

ÿ

i

´

yi ´ Qpsi, ai|θ
Qq

¯2
(10)

where yi is calculated from the Bellman equation.

∇θµ J «
1
N

ÿ

i

´

∇aQps, a|θQq|s“si ,a“µpsiq
∇θµµps|θµq|si

¯

(11)

In Algorithm 2 the process for the DDPG agent is described.

TSRT10 CDIO Reglerteknik
Technical Documentation

5
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Algorithm 2 DDPG Algorithm [7]

Randomly initialize critic network Qps, a|θQq and actor µps|θµq with weights θQ and θµ

Initialize target network Q1 and µ1 with weights θQ1
Ð θQ , θµ1

Ð θµ

Initialize replay buffer R
for For episode=1, M do

Initialize a random process N for action exploration
Receive initial observation state s1
for t “ 1, T do

Select action at “ µpst|θ
µq ` Nt according to the current policy and exploration noise

Execute action at and observe reward rt and observe new state st`1
Store transition pst, at, rt, st`1q in R
Sample a random minibatch of N transitions psi, ai, ri, si`1q from R
Set yi “ ri ` γQ1psi`1, µ1psi`1|θµ1

q|θQ1
q

Update critic by minimizing the loss: L “ 1
N Σipyi ´ Qpsi, ai|θ

Qqq2

Update the actor policy using the sampled policy gradient:
∇θµ J « 1

N
ř

i ∇aQps, a|θQq|s“si ,a“µpsiq
∇θµµps|θµq|si

Update the target networks:
θQ1

Ð τθQ ` p1 ´ τqθQ1

θµ1
Ð τθµ ` p1 ´ τqθµ1

end for
end for

3.5 Black-Box Model

A black-box model lets you estimate models from measured data. In this way, a model of a system can be modeled
without knowledge of the physics of the system [8]. All that you have to know is the inputs and outputs of the system.
It is those features that the data, which is used to estimate the model, contains.

Black-box models are normally described in discrete time since the data used to estimate them are collected in
sampled form [8]. Equation 12 shows a general linear discrete time model.

yptq “ Gpq, θquptq ` Hpq, θqeptq (12)

Here, Gpq, θq is the transfer function from the input, u(t), to the output, y(t). The matrix Hpq, θq is the transfer function
from the disturbance, e(t) (white noise), to the output, y(t). The vector θ is the unknown model parameters that will be
estimated and q are the shift operator.

There are several special case-models that can be modeled based on this general model. Three of these are the
output error model (OE), the ARMAX model and the ARX model.

3.5.1 Output Error

An OE model does not model the properties of the disturbance signals and sets Hpq, θq ” 1. This gives the model
described in Equation 13.

yptq “ Gpq, θquptq ` eptq (13)

TSRT10 CDIO Reglerteknik
Technical Documentation

6
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

3.5.2 ARMAX

ARMAX model the two transfer functions with the same denominator but different nominators. If A(q) describes the
denominator, B(q) the nominator in Gpq, θq and C(q) the nominator in Hpq, θq, the ARMAX model can be written
according to Equation 14

yptq “
Bpqq

Apqq
uptq `

Cpqq

Apqq
eptq (14)

3.5.3 ARX

The ARX model is a special case of the ARMAX model where the Cpqq ” 1. This gives the model in Equation 15.

yptq “
Bpqq

Apqq
uptq `

1
Apqq

eptq (15)

3.6 Three Parameter Model

The idea with the three parameter model is to be able to estimate the dynamic of an unknown system by study the
response of a step made in the input signal of the system. The model contains three parameters that need to be
determined, these are the static gain of the system (K), the time constant (T) and the time delay (L). The model can
be written according to Equation 16.

Gpsq “
K

Ts ` 1
e´sL (16)

From a step response, the three parameters can be determined. The parameter K is determined by the static gain of the
step response. The parameter T is determined by the time it takes for the system to reach 63 % of its final value in the
step response and L is determined by the time between when the step is preformed and when the system reacts to the
step.

3.7 RGA Analysis

RGA analysis is used to measure the degree of cross correlation in a system [9]. The RGA value is defined as below
in Equation 17

RGApGq “ G. ˚ pG´1qT (17)

where G is the system matrix and ".*" indicates element wise multiplication. The value of a row i and a column j
indicates how strong the connection between input signal ui and the output signal yj are.

3.8 Decoupled control

Decoupled control are used when you want to do decentralized controlling of a system, but there are no natural couples
of input- and output signals. With the decoupled control, a change of variable will be performed where ỹ “ W2y and
ũ “ W1

1 u. This results in a transfer function

G̃ “ W2psqGpsqW1psq (18)

TSRT10 CDIO Reglerteknik
Technical Documentation

7
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

that is as near a diagonal matrix as possible. Here, G is the original transfer function of the system. This will result in
a regulator described below.

u “ ´W1Fdiag
y W2y (19)

where Fdiag
y is the PID controller where each input will control each output separately. The matrices W1psq and W2psq

are thus two matrices that will manipulate the system so that one input signal controls one output signal and affects
the other output signals as little as possible, i.e turn the system matrix, G̃, into a diagonal matrix. These matrices can
be hard to find and are often designed to fulfill this in the stationary case (s “ 0) [9].

3.9 Path Generator

In this chapter the theory used to construct the path generation software will be explained.

3.9.1 Motion planning

In order to create a path that could realistically be followed by a moving vehicle the path is created by simulating a car
with random steering wheel inputs. The movement of the car can be planned using motion planning. Motion planning
is a strategy for taking the vehicle from one state to another. States can for example be position or orientation. To make
the strategy more realistic constrains are introduced on for example steer angle and acceleration as well as physical
characteristics such as the length of the wheel axis.

3.9.2 RRT

RRT is a path-planning algorithm. The algorithm can be viewed in Algorithm 3.

Algorithm 3 RRT [10]

1: T .initpxinitq

2: for k=1 to K do
3: xrand Ð RANDOM_STATEpq;
4: xnear Ð NEAREST_NEIGHTBORpxrand, T q;
5: xnew Ð STEERpxnear, xrand, ∆xq;
6: T .add_vertexpxnewq;
7: T .add_edgepxnear, xnewq;
8: if xnew “ xgoal;
9: end

10: end for
11: Return T

The algorithm works as follows. A random node is selected in the generated environment, which in our case is a
100x100 grid. The algorithm will iterate K times. Afterwards, the nearest neighbor to the random node is selected
and the graph is steered towards it; wherever the graph lands is the new node. The two nodes are then connected and,
unless the new node is the goal node, the process is repeated. The algorithm either ends when it has iterated K times
or when the goal has been reached. The path is constructed of arrays which contain the x- and y-coordinates, the
orientation angle, and the velocity.

TSRT10 CDIO Reglerteknik
Technical Documentation

8
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

4 S Y S T E M OV E RV I E W

In the present section the complete system is presented followed by descriptions of the systems components. A
schematic view of the complete system is presented in Figure 1.

Figure 1: A schematic view of the complete systems components together with their respective inputs and outputs. The red area
mark the area that would be implemented in the physical AGV. In that case the green area would be exchanged with the
physical AGV. The blue area marks the environment with which the auto-tuner interacts.

The main components of the complete system is the Simulator, the Controller, the Observation Generator, the
Evaluator and the Agent.

‚ The Simulator is responsible for simulation of the physics of the AGV, for calculating errors that can be used
for visualisation and for providing a reference signal for the controller. The Simulator is further described in
Section 5.

‚ The Controller is responsible for calculating control signals for the AGV and is described further in Section 6.

‚ The Observation Generator is responsible for providing the Agent with an observation signal and is described
further in Section 7.

‚ The Evaluator is responsible for providing the Agent with a reward signal and is described further in Section 8.

‚ Finally, the Agent is responsible for providing the Controller with control parameters and is further described in
Section 9.

The complete system in simulink can be viewed in Figure 2.

TSRT10 CDIO Reglerteknik
Technical Documentation

9
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 2: The complete Simulink model.

5 S I M U L ATO R

The simulator is structured in simulink as shown in Figure 3.

TSRT10 CDIO Reglerteknik
Technical Documentation

10
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 3: Simulator model in simulink.

5.1 System model

In this section, the physical models which describes the AGV are presented and explained. The system mainly consists
of two subsystems, the electrical motor model and the kinematic model of the AGV. The two models are described
below. The system model template in simulink can be viewed in Figure 4

Figure 4: Simulator model in Simulink

TSRT10 CDIO Reglerteknik
Technical Documentation

11
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

5.1.1 Electrical motor

The AGV has two electrical motors, one to each wheel. Since it is the same type of motors powering the two wheels,
the dynamical models of the two motors are the same. The models were estimated from measurement data provided
by Toyota. The data had been collected from the AGV when it was driving. The data contained a lot of features. The
features used to estimate the electrical motor were the reference velocity of each wheel and the actual velocity of each
wheel. The provided data was divided into three data sets of equal size. Two of the data sets were used to estimate the
model of the electrical motor.

To estimate a model of the electrical motor, the System Identification Toolbox in Matlab was used. The data for
the right wheel (reference velocity and the actual velocity) of the first data set was divided into training data (Working
data) and validation data. The split was 50/50. The mean and trend of all the data sets was removed before the
estimation and validation were preformed. First, several polynomial models was estimated using ARX, ARXMAX
and OE models (see Section 3.5). The order of the models was kept as low as possible to get simple models. Some
state space models were also estimated.

The evaluation of the models was mainly done by looking at the performance of fit to the validation data, the
location of the zeros and poles of the models and the cross correlation of the input and output to the model. After some
estimations, an ARX model order [3 1 3] was chosen. The fit to the validation data of the model can be seen in Figure
5 together with an other estimated model. Both models fit the validation data very well, about 98 %.

Figure 5: The output values of the estimated models and the validation data.

Figure 6 show the zeros and poles localization of the two models. One can clearly see that the poles of the other
model are located outside the unit circle, making the model unstable. This is the reason why the ARX model was
chosen.

TSRT10 CDIO Reglerteknik
Technical Documentation

12
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 6: Localization of the zeros and poles of the estimated models.

The chosen model was evaluated on the other data sets mentioned above. The fit to the data for the model was
between 95-98 %. The model are given in discrete form according to

Apzqyptq “ Bpzquptq ` eptq (20)

here,
Apzq “ 1 ´ 0.9968z´1 ´ 0.06231z´2 ` 0.1968z´3

and
Bpzq “ 0.1381z´3.

This gives the discrete transfer function

Gpzq “
0.1381z´3

1 ´ 0.9968z´1 ´ 0.06231z´2 ` 0.1968z´3 (21)

Since the other Simulink models are in continuous time the discrete transfer function is made continuous in Matlab
using the command "d2c". The resulting transfer function is presented below.

Gpsq “
´8.005s3 ` 1559s2 ´ 2.072 ¨ 105s ` 9.325 ¨ 106

s4 ` 127.3s3 ` 3.038 ¨ 104s2 ` 9.771 ¨ 105s ` 9.298 ¨ 106 (22)

As one can see, G(s) is not so simple. To further simplify the model, the model was implemented in Simulink with a
step as input signal. The output of the model was studied and a three parameters model was made to fit the dynamics
(see Section 3.6). The performed step can be viewed in Figure 7.

TSRT10 CDIO Reglerteknik
Technical Documentation

13
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 7: The output of the estimated model when the input signal is a step with 1 as final value. The time is plotted on the
horizontal axis and the output values are plotted on the vertical axis.

In Figure 7, one can see that the static gain is equal to 1, the time delay is approximately 0.04 seconds and the time
constant is about 0.1 seconds. This results in the final model of the electrical motor which is given in Equation 23 as
a first order system with a time delay.

Gpsq “
1

0.1s ` 1
e´0.04s (23)

Figure 9 shows the final model of the electrical motor implemented in Simulink. The input to the model is the
reference velocity of the wheel that the motor is powering and the output is the velocity of the wheel. Figure 8 shows
the final model together with the transfer function in Equation 22. One can see that the two models are performing
very similarly.

TSRT10 CDIO Reglerteknik
Technical Documentation

14
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 8: The output of the estimated ARX model and the final model of the electrical motor when the input signal is a step with
1 as final value. The time is plotted on the horizontal axis and the output value are plotted on the vertical axis.

Figure 9: The figure shows how the final model of the electrical motor is implemented in Simulink.

5.1.2 Disturbance implementation in the electrical motor

There are several disturbances that can affect the motors in the AGV. For instance, the required torque in the motor can
increase suddenly because the mass that the vehicle is carrying increases or are unevenly distributed on the vehicle,
which would result in an increasing time delay. The required torque can also decrease for instance if the friction
between the wheel and the floor is decreasing, which would result in a decreasing time delay. Therefore, the time
delay in the motor can be adjusted from the GUI as a way to simulate the mentioned disturbances. For each episode
during training of the auto-tuner, time delay in the left and right motor is uniformly sampled between zero and a max
value that is configured in the GUI.

TSRT10 CDIO Reglerteknik
Technical Documentation

15
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

5.1.3 Kinematic model

The AGV will drive around in a global coordinate system where the coordinate axis are fixed to the environment. The
AGV itself will constitute a local coordinate system with origin centered in between the two driving wheels and the x
axis always pointing forward in the heading of the AGV. The two coordinate systems are illustrated in Figure 10. The
angle between the x axis in the global coordinate system (x) and the x axis in the local coordinate system (x1) is theta
(θ) and will be referred to as the heading angle.

Figure 10: An illustration of the local and global coordinate system.

A point in the global coordinate system can, with the local coordinates, be described as
„

x
y

ȷ

“

„

cos θ ´ sin θ
sin θ cos θ

ȷ „

x1

y1

ȷ

(24)

The position and orientation of the AGV will be determined by the wheel velocities of the side wheels powered by
the two electrical motors. The velocity and the angular rate can be calculated as

v “
vr ` vl

2
(25)

ω “
vr ´ vl

L
(26)

where L is the length of the wheel axle, v is the AGV aligned velocity and ω is the angular rate of the vehicle. This
corresponds to the state-space model

TSRT10 CDIO Reglerteknik
Technical Documentation

16
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

»

–

9xl
9yl
9θ

fi

fl “

»

–

0.5 0.5
0 0

0.5 ´0.5

fi

fl

„

vr
vl

ȷ

(27)

Equation 24 and 27 give the final kinematic model which gives the global coordinates of the AGV in state space
form. The model in global coordinates is thus

»

–

9xg
9yg
9θ

fi

fl “

»

–

0.5 cos θ 0.5 cos θ
0.5 sin θ 0.5 sin θ

0.5 ´0.5

fi

fl

„

vr
vl

ȷ

(28)

The implementation of the global kinematic model is presented in Figure 11, 12 and 13.

Figure 11: The Kinematic model implemented in Simulink.

Figure 12: The block "Motoraxel" implementation in Simulink.

TSRT10 CDIO Reglerteknik
Technical Documentation

17
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 13: The Matlab function "Hjul" which is a part of the implemented Kinematic model in Simulink.

5.2 System Validation

In order to validate the model described in Section 5.1 the system outputs are compared to measurement data from a
real world AGV when using the the same inputs. The inputs and validation data have been obtained from tests done
by Toyota. The X and Y target position from the tests are fed into the system and used as reference data and then
compared to the results generated by the AGV during the test. Example of the output can be seen in Figure 14

TSRT10 CDIO Reglerteknik
Technical Documentation

18
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 14: Plot comparing the outputs of the model to the measurements obtained by Toyota

In Figure 14, one can see that the model reflects the real AGV very well, although it is not perfect. However, the
results are considered to be good enough to use the model in the simulator.

TSRT10 CDIO Reglerteknik
Technical Documentation

19
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

5.2.1 Measurements

The measurement component is responsible for creating realistic measurement signals from the system states that
is outputted from the system component. This is accomplished by adding white noise to each system state. The
covariance of this noise can be indirectly controlled by setting the peak power distribution or noise power. For each
episode during training of the auto-tuner, the noise power for each measured signal is uniformly sampled between zero
and a max value that is configured in the GUI. Figure 15 shows how the measurements are implemented in Simulink.

Figure 15: Implementation of the measurements in Simulink.

5.3 Path- and Reference Generation

In this subsection the path generation and reference generation is described.

5.3.1 Path-generation

Below is a description of how the two path generation methods are created.

5.3.1.1 R R T

The creation of the RRT path is visualized in Figure 16.

TSRT10 CDIO Reglerteknik
Technical Documentation

20
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 16: RRT construction

The user input is analyzed in createpaths.py (the input is how many paths that shall be created). The amount of
paths is later combined in randompaths.py with the world creation made by world.py and rrt.py. The paths are then
rearranged in multiple steps. The rearrange is made to make the path not have two similar nodes in the paths and also
to make the path as difficult as possible.

5.3.1.2 S P L I N E PAT H

The model is based on the theory from Section 3.9.1 and has four main states, X, Y, heading (θ) and velocity (v).
New state values are calculated with an even time interval Ts using acceleration (a) and steer angle (δ). To generate
a realistic behavior δ has been limited to π{4. For the purpose of generating paths acceleration and velocity are kept
constant while the steer angle is randomized. The odds are set to a two in five chance to give a max steer angle in each
step and a three in five chance to give an input angle of a random number between 0.698 rad and ´0.698 rad. The path
is made up of all the X and Y coordinates the path model visits. Since the distance error for the controller is calculated
as the distance to the closest (x,y) position it is important to be able to adjust the density of the states. This is done
by using equidistant states. This approach has been turned into a function which can be looped to create any specified
integer number of randomized paths for training the agent. Settings for path density and number of paths can be found
in the GUI settings in the Path settings section. It is also possible to change the variables in the run_simulator.m file.
Examples of paths generated by the spline function can be seen in the Figures 41 and 42 in Section 12.

5.3.2 Reference Generation

The reference generator block in simulink can be viewed in Figure 17. The simulink model takes measured inputs of
x- and y-coordinates of the AGV and calculates what point/node to advance towards in the path-following algorithm
based on which is closest. The reference orientation uses a look-ahead, meaning that the reference is set to the
orientation a number of points forwards. The reference velocity is however set to a fixed value. The velocity and
orientation is sent to the controller, see Figure 2 for clarification.

TSRT10 CDIO Reglerteknik
Technical Documentation

21
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 17: Reference generation

5.4 Error Model

The error model is used to calculate the errors and path deviations and later is used to analyse the performance of the
agents and the static tuning. The model uses the system states and the reference path to calculate the heading, velocity
and distance errors. The Simulink implementation can be viewed in Figure 18.

Figure 18: Error model

TSRT10 CDIO Reglerteknik
Technical Documentation

22
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

6 C O N T R O L L E R S

Here the systems two controllers are described. The first one called the Project Controller is the main controller used
to regulate the AGV. The second controller called the Toyota Reference Controller is used to perform the system
validation described in Section 5.2. The top level controller block in the Simulink model containing both controllers
can be viewed in Figure 19. The reference signal is received from the reference generator, see Section 5.3.2 for further
details, and the controller yields a control signal which is used in the simulator, see Figure 2.

Figure 19: Top level controller block containing both the Project Controller and the Toyota Reference Controller. The block is
implemented as a variant block in Simulink enabling the user to easily select a controller from the GUI.

6.1 Project Controller

The Project controller controls the wheel speed of the two driving wheels in the AGV to reach the desired velocity and
heading angle of the vehicle. The inputs to the controller are thus the reference velocity and the reference heading,
described in Section 5.3.2, and the outputs are the reference speed of the right and left motor in the AGV. The controller
is a PID controller.

Since the number of input signals and output signals are equal, Decentralized control will be used. To determine if
there are any naturally couples of input- and output signals, an RGA-analysis is made. Since the controller controls
the velocity and heading of the AGV, Equation 27 is the system that the controller controls. If the velocity in the
y-direction (since it is always zero and not controlled) the system can be written as

G “

„

0.5 0.5
0.5 ´0.5

ȷ

(29)

TSRT10 CDIO Reglerteknik
Technical Documentation

23
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

The RGA are calculated according to Equation 17 in Section 3.7 and are presented below.

RGA “

„

0.5 0.5
0.5 0.5

ȷ

(30)

As one can see, there are no input signal that affect one of the outputs signals more than the other. Because of this,
decoupled control is suitable to use (see Section 3.8). With

W1 “

„

1 ´1
1 ´1

ȷ

and

W2 “

„

1 0
0 1

ȷ

the controller becomes decoupled with the first input signal (vr) controlling the first output signal (v) and the second
input signal (vl) controlling the second output signal (θ). The project controller can be viewed in Figure 20.

Figure 20: Project controller

Both PID controllers are identical in Simulink and can be viewed in Figure 21.

Figure 21: PID

6.2 Toyota Reference Controller

Figure 22 show the Simulink implementation of the Toyota Reference Controller that is used for the system validation
described in Section 5.2.

TSRT10 CDIO Reglerteknik
Technical Documentation

24
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 22: The Simulink implementation of the Toyota Reference Controller.

7 O B S E RVAT I O N G E N E R ATO R

The observation signal is defined as the absolute values of the position errors in x and y directions, heading error and
velocity error according to the following equations:

ox “ |xmeas ´ xre f | “ |ex|

oy “ |ymeas ´ yre f | “ |ey|

oθ “ |θmeas ´ θre f | “ |eθ|

ov “ |vmeas ´ vre f | “ |ev|

(31)

where zre f and zmeas are the reference and measured values of the parameter z. Figure 23 shows the implementation
of the observation generator in Simulink.

Figure 23: Implementation of the observation generator in Simulink.

TSRT10 CDIO Reglerteknik
Technical Documentation

25
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

8 E VA L UATO R

In this section the reward signals are described.

8.1 Linear Reward

The linear reward function is the sum of the absolute values of the heading and velocity errors multiplied by their
corresponding constants Kθ and Kv. The linear reward function is defined as:

rlin “ |eθ| ¨ Kθ ` |ev| ¨ Kv (32)

where eθ is the heading error, ev is the velocity error and Kθ and Kv are heading and velocity constants. These constants
are tuning parameters and should be adjusted based on the type of the agent and/or the purpose of the training. For
instance, if the velocity constant is larger than the heading constant, a change in the velocity error affects the reward
more than what an equal change in heading error would do. As a consequence, the agent would lay more weight on
keeping the reference velocity as compared to the heading since it would maximize the reward. Figure 24 shows the
implementation of the linear reward function in Simulink.

Figure 24: Implementation of linear reward in Simulink.

8.2 Linear Exponential Reward

The linear-exponential reward function consists of two components, a linear component and an exponential component.
The idea is that the absolute value of the reward should increase linearly when the heading and velocity errors lay
between zero and a threshold value and exponentially otherwise. In order to make this function work as intended, the
reward must be negative so that a large value for the reward could be considered as a bad reward. In this way, the agent
is encouraged to keep the errors in the linear part in order to maximize the reward. The linear-exponential reward
function is defined according to:

rlin´exp “ rθ ` rv (33)

where

rθ “

#

|eθ| ¨ Kθ if |eθ| < Cθ

expp|eθ| ´ Cθq ¨ Kθ if |eθ| >= Cθ

(34)

rv “

#

|ev| ¨ Kv if |ev| < Cv

expp|ev| ´ Cvq ¨ Kv if |ev| >= Cv
(35)

TSRT10 CDIO Reglerteknik
Technical Documentation

26
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

and where eθ , ev, Kθ and Kv are as before and Cθ and Cv are heading and velocity thresholds. Figure 25 illustrates the
implementation of the linear-exponential reward function in Simulink.

Figure 25: Implementation of linear-exponential reward in Simulink.

9 AU TO T U N E R

The agents used for the auto tuner are built by neural networks that utilizes a number of different layers, each with
their own functionalities. The used layers are described below.

F E AT U R E I N P U T This layer is the start of every network and it inputs feature data to the network and applies data
normalization.

F U L LY C O N N E C T E D (F C) The fully connected layer multiplies its layer’s input with a weight matrix and adds a
bias vector. This layer has the most affect on the size and the needed computational time of the network. The
number of hidden units, which is a hyperparameter, needs to be defined. In this project this value can be changed
both when using the GUI and the code.

R E L U Rectified linear unit (RelU) is an activation layer that performs a threshold operation on the input. The input
values that are less than zero are set to zero. This layer speeds up the training process since it has fewer flat
gradients.

TA N H This is an activation layer that applies the tanh function on the layer’s inputs. The pro of this layer is that
it gives zero-centered output and thereby supports the backpropagation process. The output has a value in the
range of [-1,1].

TSRT10 CDIO Reglerteknik
Technical Documentation

27
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

S O F T M A X The softmax layer normalizes the input into a probability distribution. The output from this layer is in
the range of [0,1].

S C A L I N G The scaling layer scales and biases the input the input and is used, in this project, to create lower and
upper boundaries for the actions.

C O N C AT E N AT I O N The concatenation layer takes inputs and concatenates them. It is used for the actor network in
the PPO-method to combine the mean and standard deviation paths.

Figure 26 and Figure 27 show an overview of the neural networks of the PPO and DDPG agents implemented in
MATLAB. It is common practice to have fully connected and activation layers following one another. The activation
layers introduce non-linearities while the fully connected helps by learning non-linear combinations. The actor net-
work of the PPO-algorithm uses observations as inputs, introduces non-linearities and hidden units to learn them. The
path is divided into two which corresponds to a Gaussian probability distribution, using the softmax layer, with mean
value and standard deviation. Before an output is received the two paths are scaled to create the boundaries for the
actions. The critic network is simpler, with less layers, and returns the corresponding expectation of the discounted
long-term reward as output. When using the DDPG-algorithm the actor network is similar to the PPO critic. It takes in
observations and then gives an output in the shape of control parameters used for controlling the AGV. It differs since
the actions are scaled to limit the action. The critic network starts with two paths which are observations and actions.
These two paths are combined with a concatenation layer. After a few additional layers it returns the expectation of
long-term reward as output.

(a) Actor network of the PPO agent. (b) Critic network of the PPO agent.

Figure 26: Neural network structure of the PPO agent.

TSRT10 CDIO Reglerteknik
Technical Documentation

28
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

(a) Actor network of the DDPG agent. (b) Critic network of the DDPG agent.

Figure 27: Neural network structure of the DDPG agent.

Furthermore the representations for the actor and critic for each method was created from the networks using in-
built functions in MATLAB. The complete agent ready for training could then be defined from said representations.
How this was done can be seen in the code in the appendix (see ??).

9.0.1 Static Agent

In addition to the machine learning based auto-tuner, a Static Agent has been implemented that outputs constant control
parameters that can be set from the GUI.

9.1 Validation Methodology

To validate the result of the auto-tuner a number of simulations were performed with varying measurement noise
powers and control delays. For each simulation, the maximum path deviation, heading error and velocity error was
calculated and compared with the performance requirements [2]. The result from these validation tests are presented
in Section 12.2.

10 V I S UA L I Z AT I O N

In this section the visualization of the system output is explained.

10.1 Visualisations

In the GUI there are three tabs that visualize the performance and training of the agent. The first tab is presented in
Figure 28 and shows the results of the most recent simulation. Six different plots are shown. On the left the path
heading error and velocity error are visualized. The path plot shows the reference path compared to the position of

TSRT10 CDIO Reglerteknik
Technical Documentation

29
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

the AGV for every time step. The heading and velocity error shows the difference between the reference and the
actual value and how it changes over time. On the left side the positional errors are shown. The path deviation total is
the euclidean distance between the current position of the AGV and the closest point in the reference path. The path
deviation in x and y are calculated in a similar way but only displays the difference in a certain direction.

Figure 28: Results tab of the GUI

The learning tab is displayed in Figure 29 and shows three plots. The learning process graph shows the accumu-
lated reword for each episode during training and the 100 episode moving average. Total distance error gives the
accumulated distance error for each episode. The third graph shows the average PID parameters for each episode.

TSRT10 CDIO Reglerteknik
Technical Documentation

30
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 29: Learning tab of the GUI

The last tab is the validation tab and shows the results from the agent validation, see Figure 30. It displays the
highest path deviation, heading error and velocity error from each validation episode. It is also possible to display the
performance requirements from the requirements specification [2].

TSRT10 CDIO Reglerteknik
Technical Documentation

31
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 30: Validation tab of the GUI

11 I N I T I A L I Z AT I O N

In this section the execution flow for running the system is described. To start the simulation you first start the
GUI file. This will present you with a lot of options which are described in detail in the user manual. To start the
simulation you press the start button. This exports all of the settings as variables to the work space along with one
extra variable which tells the program that we are running the program via the GUI. The first file to start from the
GUI is the run_simulator.m. This file contains all the functionality of the GUI but is less user friendly. The run file
in turn fetches the the auto-tuner settings from the selected reinforcement learning architecture, generates paths via
the generate_paths.m file and exports settings to all of the Simulink modules. The program then starts the training
of the agent which is saved in a folder called saved agents. When the agent is fully trained the textitrun_simulator.m
then runs a simulation of the system with the trained agent at the path selected by the path index plot setting and saves
relevant data to the work space. After this step the user has the option to visualise the data in the GUI. If they wish to
do so the GUI will fetch the requested variables from the work space and plot them. A simplified explanation of this
process can be see in Figure 31.

TSRT10 CDIO Reglerteknik
Technical Documentation

32
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 31: Simplification of the flow when running the software

12 R E S U LT S

In this section the results are presented.

12.1 Training

In this section, the results of the training with the two reward functions discussed in Section 8 are presented. To be
able to do a fair comparison between these two reward functions, the settings in Table 2, of which some are the same
for both functions are used.

Table 2: Used parameters when training with two different reward functions.

Variable Linear Reward Linear-Exponential Reward
Kθ -8 -8
Kv -10 -10

Ts [s] 2 2
Simulation time [s] 70 70
of nodes in HL 35 35

of episodes 3000 3000
Cθ - 0.043
Cv - 0.5

12.1.1 Linear Reward

A training process of a PPO agent using the linear reward function is displayed in Figure 32 and the results obtained by
the last trained agent is shown in Figure 33. As seen in Figure 32, both the average and episode rewards has a smooth
behavior and increases as the number of episodes increases. The bottom right plot shows the different controller gains
that the agent chooses in order to learn the optimal policy.

TSRT10 CDIO Reglerteknik
Technical Documentation

33
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 32: Learning process of a PPO agent using linear reward.

TSRT10 CDIO Reglerteknik
Technical Documentation

34
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 33: Training results for a PPO agent using linear reward.

12.1.2 Linear Exponential Reward

Figure 34 shows training process of a PPO agent using linear-exponential reward function. The results corresponding
to this training are displayed in Figure 35. Similar to the linear case, the average reward increases with increasing
number of episodes in this case as well, but the behavior of the episode reward is not as smooth as the linear case.
There are some differences in the performance of the two agents as well. As seen in Figure 35, the agent using the
linear-exponential reward takes much longer time to achieve the desired velocity as compared to the agent that uses
linear reward (see Figure 33). These differences however are a direct consequence of the choice of the parameters. In
order to get a reward that works well for a specific problem, one should tune these parameters which in most cases is
a very time-consuming task.

TSRT10 CDIO Reglerteknik
Technical Documentation

35
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 34: Learning process of a PPO agent using linear-exponential reward.

Figure 35: Training results for a PPO agent using linear-exponential reward.

TSRT10 CDIO Reglerteknik
Technical Documentation

36
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

12.2 Performance

In this section, the performance of the complete system is displayed.

12.2.1 Static Agent

The performance of the static agent described in Section 9.0.1 is used as a benchmark to which the performance of the
RL agents can be compared. The static agent’s controller gains were tuned manually by testing different values until
an acceptable performance level was reached. The resulting parameters are displayed in Table 3. In the table, l and r
refer to the left and right electric motors and P, I and D denote the proportional, integral and derivative gains of a PID
controller (see Figure 21).

Table 3: Controller gains of the static agent.

Controller Gains Value
KPl 0.3
KIl 1.5
KDl 0
KPr 5
KIr 0.1
KDr 0

The static agent was then used with these parameters to run the simulation 20 times with 20 randomly generated
paths using the validation function in the GUI. Figure 36 shows the resulting validation plots in which the requirement
associated to each plot is drawn as a dashed red line (see [2]). As seen in this figure, the static agents performs well
keeping the velocity error and path deviation under the desired levels but the heading error crosses its threshold in at
least five simulations.

TSRT10 CDIO Reglerteknik
Technical Documentation

37
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 36: Validation results for the static agent for v = 1 m/s.

12.2.2 PPO Agent

The validation results for the PPO agent are shown in Figure 37. The agent was trained for 5000 episodes using
the linear reward function. The learning rate was set to 0.001 and the number of nodes in the hidden layers was 35.
Table 4 contains all the variables used for this training. The noise is sampled with a sample time of 0.025 s in Simulink.
Combining this sample time and the given noise power values results in a standard deviation of 6.32e-4. The validation
was performed in the same way as the static agent with 20 randomly generated paths. In contrast to the static agent,
the PPO agent meets all the requirements (see [2]).

TSRT10 CDIO Reglerteknik
Technical Documentation

38
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Table 4: Parameters used to train the PPO agent.

Variable Value
Kθ -3
Kv -10

Ts [s] 2
Simulation time [s] 80
of nodes in HL 35

of episodes 5000
TD left motor 0.025

TD right motor 0.025
Noise power x pos 1e-8
Noise power x pos 1e-8

Noise power velocity 1e-8
Noise power heading 1e-8

Figure 37: Validation results for the PPO agent for v = 1 m/s.

The generated controller gains by the PPO agent for one simulation are displayed in Figure 38. The oscillations in
the gains reveals the stochastic nature of the PPO agent which generates the actions from a normal distribution with a
specific mean and standard deviation.

TSRT10 CDIO Reglerteknik
Technical Documentation

39
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 38: Controller gains generated by the PPO agent during one simulation.

The complete results of the same simulation is shown in Figure 39.

Figure 39: Performance of the PPO agent during one simulation.

TSRT10 CDIO Reglerteknik
Technical Documentation

40
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

12.2.3 DDPG Agent

The same validation, as in Section 12.2 was made for the DDPG agent. The result is shown in Figure 40. The agent
was trained for 1000 episodes with 20 hidden units for each fully connected layer and a learning rate of 1e ´ 4 for both
the critic and the actor. Figure 40 shows that the maximum error for each validation path is lower than the required
value.

Figure 40: Validation results for the DDPG agent for v = 0.8 m/s.

12.3 Different Environments

In this section examples of randomly generated paths and disturbances are shown. In Figure 41 and 42, four examples
of randomly generated spline paths (see Section 5.3.1.2) are shown.

TSRT10 CDIO Reglerteknik
Technical Documentation

41
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 41: Path 1 and 2 used for training.

Figure 42: Path 3 and 4 used for training.

In Figure 43 and 44, four examples of randomly generated rrt (see Section 5.3.1.1) are shown.

TSRT10 CDIO Reglerteknik
Technical Documentation

42
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 43: Path 1 and 2 used for training.

Figure 44: Path 3 and 4 used for training.

In Figure 45 the actual heading over time and the measured heading over time is plotted for one simulation.

TSRT10 CDIO Reglerteknik
Technical Documentation

43
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 45: The same simulation with and without added heading measurement noise.

In Figure 46 the actual velocity over time and the measured velocity over time is plotted for one simulation.

Figure 46: The same simulation with and without added velocity measurement noise.

In Figure 47 the actual position over time and the measured position over time is plotted for one simulation.

TSRT10 CDIO Reglerteknik
Technical Documentation

44
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

Figure 47: The same simulation with and without added position measurement noise. The black line shows the reference path of
the AGV. Note that a large noise power was used in order to clearly show the noise.

13 D I S C U S S I O N

From the results presented in Figures 36, 37 and 40 one can see that both the static agent and the two machine learning
based agents perform well in controlling the AGV. However, the static agent is not always able to keep the heading
error within the requirement. Both of the machine learning based agents are able to keep the path-, heading- and
velocity errors within requirements. Because of this, one could say that both the machine learning based agents are
better or more robust than the static agent.

Since the auto-tuner only choose tuning parameters, the performance of controlling the AGV will to some degree
be constrained of the design of the controller and the path following. For instance, if the design of the controller is
bad, tuning the parameters may not help to increase the performance to an acceptable level. This does not mean that
the ability to evaluate the machine learning method is lost since the performance of the auto-tuner is compared with
the static agent in this work. However, if the static agent would not be able to control the AGV because of poor choice
of control design or path following method, the evaluation of the auto-tuner could have been problematic. In light of
this, it should be noted that the path deviation metric displayed in Section 12 should be viewed with some caution in
regard to the performance of the auto-tuner. The reason for this is that the auto tuner affects the path deviation only in-
directly, since both the implemented controller and the auto-tuner is set up to minimize the heading and velocity error.
If the generated reference heading and velocity is not sufficiently accurate, the controller could perfectly minimize the
heading and velocity error while still maintaining a large path deviation.

The machine learning methods used to tune the PID-parameters themselves require a great deal of tuning and choice
of parameters to be able to perform well. This raises the question whether it is worth using machine learning to tune
the PID-parameters in the controller, especially when the number of received parameters are few. Another approach
could be that instead of using machine learning to tune the PID parameters in an already existing controller, one could
simply just use machine learning as the controller. This will of course also require tuning, but the process of designing
a whole controller is avoided.

TSRT10 CDIO Reglerteknik
Technical Documentation

45
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

13.1 Post-development

There are certain features that the project group would have liked to develop if the project were to continue.

13.1.1 Path-following

A significant improvement in the path-following algorithm is ensuring that it can handle crossings. As of now, the
path-following algorithm will always choose the closest node; in essence, if a node - a shortcut - exists that is closer to
the AGV’s position yet which will steer the AGV towards an unintended node, the current path-following algorithm
will steer towards this erroneous node. This was also the major flaw of the RRT as its sharp corners often caused the
path-follower to take shortcuts in the corners. An improved path-following algorithm would consider the closest node
as well as its relative position in the path so as to avoid shortcuts.

13.1.2 Physical Electrical Motor Development

An interesting further work area is the modeling of the electrical motor. Many disturbances can be modeled through
the motor, for instance position of the load that the AGV is carrying and chance of frictions between the floor and
the wheels. If a physical model of the motor, for instance a state space model, was developed, measurements of the
wheel speed and estimations of the required torque could perhaps be used as observations to the agent. Then the agent
could be trained to recognize these disturbances and improve its ability to handle these scenarios. This would make
the control more robust which could be beneficial in environments with a lot of unpredictable occurrences.

13.1.3 Machine Learning Methods

When it comes to the machine learning methods there are quite a bit of things that could be experimented with further.
There are a great amount of possibilities when dealing with networks and all the different parameters used for the
agent and its training. The architecture of the actor and critic networks can be implemented in many different ways,
with different amount and types of layers. To explore several network structures was not a part of this project and
could be interesting to develop further. This combined with changing the amount of hidden units could give an agent
that performs better.

13.1.4 Machine Learning Implementation

In this project the agent gives actions in the form of control parameters that directly controls the AGV. This could
easily be changed, with the existing system, to instead tune already existing PID-parameters meaning that the agent
only finely tunes the system. Another interesting implementation is to remove the controller completely and let the
agent directly give actions as the control signals for the AGV.

13.1.5 Disturbances

An observation during the project was a tendency for the agent having trouble in finding good parameter values if
there was a large time delay in the motor (see section 5.1.2. Another interesting area of future research would be to do
a more formal study if any of the disturbances is more difficult for the agents to handle.

TSRT10 CDIO Reglerteknik
Technical Documentation

46
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

13.1.6 Real world implementation

The results of this study is completely based on the simulator output. For a more robust conclusion the agent and
training would need to be integrated in a real world system.

14 C O N C L U S I O N

Based on the results obtained, one can say that it is possible to use machine learning methods to tune parameters
in a controller, with better results than manual tuning. The method has potential to save a great deal of time and
work when designing a controller, but if the number of tuned parameters in the controller is few and the variations
of the AGV’s environment is not too large, the process can be more time consuming than to tune the parameters
manually. Additionally, the project has been possible due to the simulation. If instead the project was for a real AGV
to learn its control parameters, in a real/non-virtual environment, the tuning would not be realistic. The amount of
iterations needed to tune the parameters would not be attainable in a real scenario. However, if the simulations is
sufficiently accurate, then this process for tuning the controller is satisfactory; although it changes the focus of the
assignment from machine learning tuning to creating a sufficiently accurate simulation. For a real-world application,
it is advisory to combine a simulation environment with a real environment: start by completing a base-tuning in a
simulation environment; as the base-tuning is completed, one can then present the AGV in a real environment where
it can continue learning over a longer period of time.

TSRT10 CDIO Reglerteknik
Technical Documentation

47
AGV Machine Learning

carhe007@student.liu.se

carhe007@student.liu.se

AGV Machine Learning December 2021

R E F E R E N C E S

[1] C. H. Heden et al, “Design specification,” Oct 2021.

[2] ——, “Requirement specification,” Sep 2021.

[3] ——, “User manual,” Nov 2021.

[4] OpenAI, “Proximal policy optimization,” 2018, accessed: 2021-10-04. [Online]. Available: https:
//spinningup.openai.com/en/latest/algorithms/ppo.html

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization algorithms,”
2017, accessed: 2021-11-29. [Online]. Available: https://arxiv.org/pdf/1707.06347.pdf

[6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
with deep reinforcement learning,” 2019.

[7] OpenAI, “Deep deterministic policy gradient,” 2018, accessed: 2021-10-04. [Online]. Available: https:
//spinningup.openai.com/en/latest/algorithms/ddpg.html

[8] T. Glad, L. Ljung, and A. Hansson, Modeling and Identification of Dynamic Systemsr. Studentlitteratur, 2021.

[9] T. Glad and L. Ljung, Reglerteori: flervariabla och olinjara metoder. Studentlitteratur, 2003.

[10] M. LaValle S., “Rapidly-exploring random trees: A new tool for path planning,” 1998.

[11] OpenAI, “Key concepts in rl,” 2018, accessed: 2021-10-06. [Online]. Available: https://spinningup.openai.com/
en/latest/spinningup/rl_intro.html#

[12] A. Holgersson and J. Gustafsson, “Trajectory tracking for automated guided vehicle,” 2021.

[13] C. H. Heden et al, “Test plan,” Oct 2021.

[14] E. Frisk, “Tsfs12 hand-in exercise 3.” [Online]. Available: https://gitlab.liu.se/vehsys/tsfs12/-/blob/master/
Handin_Exercises/HI3_VehicleControl/exercise3.pdf

TSRT10 CDIO Reglerteknik
Technical Documentation

48
AGV Machine Learning

carhe007@student.liu.se

https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://spinningup.openai.com/en/latest/algorithms/ppo.html
https://arxiv.org/pdf/1707.06347.pdf
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/algorithms/ddpg.html
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#
https://spinningup.openai.com/en/latest/spinningup/rl_intro.html#
https://gitlab.liu.se/vehsys/tsfs12/-/blob/master/Handin_Exercises/HI3_VehicleControl/exercise3.pdf
https://gitlab.liu.se/vehsys/tsfs12/-/blob/master/Handin_Exercises/HI3_VehicleControl/exercise3.pdf
carhe007@student.liu.se

	1 Introduction
	2 Overview
	3 Theory
	3.1 Introduction to Reinforcement Learning
	3.2 Types of Reinforcement Learning
	3.3 Proximal Policy Optimization (PPO)
	3.4 Deep Deterministic Policy Gradient (DDPG)
	3.5 Black-Box Model
	3.5.1 Output Error
	3.5.2 ARMAX
	3.5.3 ARX

	3.6 Three Parameter Model
	3.7 RGA Analysis
	3.8 Decoupled control
	3.9 Path Generator
	3.9.1 Motion planning
	3.9.2 RRT

	4 System Overview
	5 Simulator
	5.1 System model
	5.1.1 Electrical motor
	5.1.2 Disturbance implementation in the electrical motor
	5.1.3 Kinematic model

	5.2 System Validation
	5.2.1 Measurements

	5.3 Path- and Reference Generation
	5.3.1 Path-generation
	5.3.1.1 RRT
	5.3.1.2 Spline Path

	5.3.2 Reference Generation

	5.4 Error Model

	6 Controllers
	6.1 Project Controller
	6.2 Toyota Reference Controller

	7 Observation Generator
	8 Evaluator
	8.1 Linear Reward
	8.2 Linear Exponential Reward

	9 Auto tuner
	9.0.1 Static Agent
	9.1 Validation Methodology

	10 Visualization
	10.1 Visualisations

	11 Initialization
	12 Results
	12.1 Training
	12.1.1 Linear Reward
	12.1.2 Linear Exponential Reward

	12.2 Performance
	12.2.1 Static Agent
	12.2.2 PPO Agent
	12.2.3 DDPG Agent

	12.3 Different Environments

	13 Discussion
	13.1 Post-development
	13.1.1 Path-following
	13.1.2 Physical Electrical Motor Development
	13.1.3 Machine Learning Methods
	13.1.4 Machine Learning Implementation
	13.1.5 Disturbances
	13.1.6 Real world implementation

	14 Conclusion
	References
	Appendix

