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Abstract
Tightening emission regulations on road traffic has led to a big 
push for more efficient and less polluting engines, drivelines and 
cars in general. As of right now, a big push for electric vehicles is 
being made, however, the internal combustion engine is still 
being developed. Every possible aspect of the engine that can 
be made more efficient is scrutinized. In this project the control 
of a throttle is studied. The throttle has a non-linear friction 
behaviour which makes it difficult to control. The throttle will 
“stick” causing it to not move and have jittery movement.  
Another problem with the throttle control is the “limp-home” 
region. The “limp-home” region is at the angle that the throttle 
defaults to when no current is placed on the electric motor. This 
angle is slightly open to make sure that the car is always 
driveable, even if the control of the throttle is lost.  

A new controller that is able to adapt parameters when the car 
is running and classify if it is in a region where it might have 
gotten stuck, minimizing the effect of external disturbances 
(such as a change in temperature or pressure) is to be 
developed. Precise control in all environments allow the engine 
to always run at optimal conditions and hence lower fuel 
consumption and increase efficiency could be obtained.

Setup

Machine Learning

The throttle model from TSFS09, Modelling and Control of 
Engines and Drivelines is used. The non-linear friction of the 
throttle was modelled using coulomb friction.

Results
A sensitivity analysis was conducted using only the friction and 
limp home compensation blocks without the PID-controller 
since this would have corrected some of the faults caused by 
bad parameter estimation and therefore make the analysis less 
accurate.
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Model

It is apparent that the friction is non-linear around the limp-
home region. The coulomb friction model is piecewise linear 
and this makes it relatively easy to implement the non-linear 
friction. The full model was utilized but in a “dummy-state” only 
to give reasonably sized desired angles for the throttle.  
A PID controller with limp-home and friction compensation was 
implemented that was able to handle these non-linearities well.

A setup where the throttle was tested as hardware in the loop 
was used, which means that the throttle could be actuated 
without being installed in a real engine. This allows quick and 
easy access and testing of the throttle. A PC was used to run the 
engine model and generate the reference throttle angle and a 
Raspberry Pi 3B+ and some other electrical components were 
used to translate the signals between the throttle and the PC.

Future work

Predicting the “stick” behaviour is not simple and could seem 
random to the untrained eye. Machine learning methods can be 
used to help identifying the friction parameters when they 
change, giving improved handling of the characteristics for the 
system.
An adaptive algorithm which saves the data from the throttles 
latest 10 minutes was created. Using the current information 
the “friction-boxes” could be created and adapted for the latest 
and most accurate characteristics of the throttle. • Further improvements and interesting ways forward for the 

project are to implement a model predictive controller 
(MPC). 

• A problem during the project was a rather extensive delay 
from a command sent to the Raspberry Pi to the returning 
response. This was seen clearly when doing steps but is also 
assumed to have negative impact on the general control of 
the system. 

• Neural network models could be a way forward for the 
project. 

• Some small improvements could be done to the tuning 
parameters of the controller and/or make these adaptive as 
well.

When having a manually tuned PID-controller the results show a 
reasonable reference following of the controller. Not only for a 
step response but also when the controller was applied to a 
highly variable drive cycle such as the drive cycle supplied from 
Aurobay. The errors during certain timesteps in this drive cycle 
could be relatively large. However, the controller manages to 
eliminate the error during these time frames very quickly.

Slow ramping were used to examine the friction changes 
depending on temperature. There were no major differences 
between the different cases for either the new or old throttle. 
The small changes that can be seen in the figure below occurs 
due to stick-slip friction and therefore no visible changes in 
friction due to temperature can be observed.

Conclusions

Figure 5: The performance of the adaptive throttle control with a 
90% step response.

Figure 6: The performance of the adaptive throttle control with 
the Aurobay drive cycle.

Figure 1: Raspberry Pi 3 model B+.
Figure 3: Calculated hysteresis boxes from the Aurobay drive 

cycle.  Control signal, u, as a function of angle, 𝜃.

Figure 2: Spring torque, Ts , as function of throttle angle, 𝜃.

Figure 4: PWM signal (%) as function of voltage, V. 

Firstly, no major impact could be discovered by varying the 
operating temperature for the throttle. It could yield a better 
result with more gathered data. Also, no significant difference 
was discovered in performance between the old and the new 
throttle. 

Using the machine learning methods, large data from drive 
cycles that excites the system is required to obtain a reliable 
result for those methods. 

Figure 7: Sensitivity analysis of a section from the Aurobay drive 
cycle.


