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1 SYSTEM OVERVIEW

This section describes the system in an overall manner with some background information together with the aims and
goals of the project.

1.1 Aims and Goals

The purpose of the project is to improve the control of an intake throttle in an internal combustion engine. This is to
be done by exploring ways of identifying the throttle parameters in real time. One possible way of solving this could
be machine learning. This could be utilized in order to find a general model for learning the throttle parameters.

The goal is to first explore how the throttle parameters change with time in varying conditions, and how these changes
affect the performance of the throttle servo. The goal is further to implement an adaptive regulation algorithm for the
throttle servo in order to improve the the control of the system when the parameters inevitably change.

The final product should also provide the same driveability as a normal throttle. A car equipped with this throttle
controller should not require any special skills or adaptation of driving style. In short, it should be like driving a
normal car.

For the group it is relevant to practice how to work in projects and how to structure a project within a group. The
goal for the project group is further to gain knowledge within relevant technical areas such as machine learning and
control theory.

1.2 Use

The project can find use in many different areas using servos or actuators, not just throttles. Therefore it could be
of great value to the costumer, Aurobay. It could also be of great use in general in a lot of different disciplines for
example in automotive, aeronautical or aerospace engineering. A good solution to this problem allows the engine to
be run at optimal conditions at all times, increasing efficiency and limiting the environmental impact. If it is possible
to find a good solution for this specific task, this solution could definitely be adjusted and applied on other similar
servo or actuator related problems as well.

TSRT10 Automatic Control, Project Course
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1.3 Model Notation

Table 1: Notation of all parameters.
Notation Description

𝑇𝑢 Driving torque from motor
𝑇𝑠 Spring torque
𝑇𝑓 𝑠 Static friction torque
𝐾𝑓 𝑣 Static gain regulator parameter
𝑇𝑓 𝑣 Dynamic friction torque

𝑇𝑒𝑚𝑝 Back electromotive torque
𝑇𝑐 Coulomb torque
𝐽 Throttle moment of inertia
𝑢 Control signal
𝑒 Error value signal
𝜃 Throttle angle

𝜃±
𝑙ℎ Angular limits of the limp home region

𝑘± Gradients
𝑚±

𝑙ℎ Friction at the limits of the limp home region
𝜔 Angular velocity

𝛼𝑟𝑒𝑓 Throttle reference angle

1.4 Background Information

The design specification is a mandatory part of the project course Automatic Control, TSRT10.

1.4.1 Limp Home Region

Limp home region refers to the throttle angle, 𝜃 that the throttle has when the control signal, 𝑢 is close to zero.

1.4.2 PID Regulator

A pid regulator have the structure outlined in Equation (1).

𝑢(𝑡) = 𝐾𝑃𝑒(𝑡) + 𝐾𝐼 ∫
𝑡

0
𝑒(𝜏)𝑑𝜏 + 𝐾𝐷

𝑑𝑒(𝑡)
𝑑𝑡 (1)

Where 𝑢(𝑡) is the control signal and 𝑒(𝑡) is the error value (𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)). 𝐾𝑃, 𝐾𝐼 and 𝐾𝐷 are all constants.

2 SIMULATED VEHICLE MODEL

This chapter will discuss the implementation of the Matlab/Simulink vehicle model that is to be used in this project.
The model is taken from the course TSFS09. There will be no major changes to the model in regards of functionality,
however some changes to adapt the model to this project might be necessary. An overview is given in Figure 1.

TSRT10 Automatic Control, Project Course
Design Specification
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Figure 1: An overview of the full system in the Simulink environment in its unaltered form.

2.1 System Overview

2.2 Throttle

The main component of this project will be the throttle. The simulation model of the throttle is taken from the course
TSFS09 where it was modeled with a fuel mass flow, �̇�𝑎𝑡, described as

�̇�𝑎𝑡 =
𝑝𝑏𝑒𝑓 ,𝑡ℎ𝑟

√𝑅𝑎𝑖𝑟 ⋅ 𝑇𝑏𝑒𝑓 ,𝑡ℎ𝑟
⋅ 𝐴𝑒𝑓 𝑓 (𝛼𝑡ℎ) ⋅ Ψ(Π) (2)

where 𝑅𝑎𝑖𝑟 is the air gas constant, 𝑇𝑏𝑒𝑓 ,𝑡ℎ𝑟 is the temperature before the throttle, 𝑝𝑏𝑒𝑓 ,𝑡ℎ𝑟 is the pressure before the
throttle. The effective area for the throttle is modeled with a polynomial depending on the throttle angle 𝛼𝑡ℎ.

𝐴𝑒𝑓 𝑓 = 𝑎0 + 𝑎1𝛼𝑡ℎ + 𝑎2𝛼2
𝑡ℎ (3)

The parameter Ψ determines the fluid velocity and is calculated according to Equation (4) [8].

Ψ(Π) = √ 2𝛾
𝛾 − 1 (Π

2
𝛾
𝑙𝑖𝑚 − Π

𝛾−1
𝛾

𝑙𝑖𝑚 ) (4)

A Simulink throttle model is needed as reference in the regulator. The throttle model in this project is based on the
model outlined in Model-Based Throttle Control using Static Compensators and Pole Placement L. Eriksson et. al.[1].
The throttle model is approximated as outlined in Figure 2 [1]. 𝐾𝑓 𝑣 and 𝐾 are static gain regulator parameters [1].
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Figure 2: The throttle model as a Simulink block diagram [1]

The static gain regulator parameter 𝐾𝑓 𝑣 relate to the throttle frictions as outlined in equation (5) [1].

𝐾𝑓 𝑣𝜔 = 𝑇𝑓 𝑣 + 𝑇𝑒𝑚𝑓 (5)

The torques acting on the throttle are the driving torque from the motor 𝑇𝑢, spring torque 𝑇𝑠, static friction torque 𝑇𝑓 𝑠,
dynamic friction torque 𝑇𝑓 𝑣 and back electromotive torque, 𝑇𝑒𝑚𝑝 [1].

The driving torque 𝑇𝑢 from the motor is linearly dependent on the control signal, 𝑢.

The spring torque 𝑇𝑠 is piecewise linearly related to the throttle angle, 𝜃 in accordance to Equation (6) where 𝑘± are
different gradients, 𝜃±

𝑙ℎ is the angular limits of the limp home region, and 𝑚±
𝑙ℎ is the frictions at the limits of the limp

home region [1]. The relation is illustrated in Figure 3 [1].

𝑇𝑠(𝜃) =

⎧{{
⎨{{⎩

𝑚+
𝑙ℎ + 𝑘+(𝜃 − 𝜃+

𝑙ℎ) if 𝜃 > 𝜃+
𝑙ℎ

𝑚+
𝑙ℎ(𝜃 − 𝜃𝑙ℎ)/(𝜃+

𝑙ℎ − 𝜃𝑙ℎ) if 𝜃 < 𝜃𝑙ℎ < 𝜃 ≤ 𝜃+
𝑙ℎ

𝑚−
𝑙ℎ(𝜃𝑙ℎ − 𝜃)/(𝜃𝑙ℎ − 𝜃−

𝑙ℎ) if 𝜃 < 𝜃−
𝑙ℎ < 𝜃 ≤ 𝜃𝑙ℎ

𝑚−
𝑙ℎ − 𝑘−(𝜃−

𝑙ℎ − 𝜃) if 𝜃 > 𝜃+
𝑙ℎ

(6)

TSRT10 Automatic Control, Project Course
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Figure 3: Friction torque, 𝑇𝑠 as function of throttle angle, 𝜃 [1].

The static friction torque, 𝑇𝑓 𝑠 in the throttle is not constant but dependent on its angular velocity, 𝜔, coulomb torque
𝑇𝑐 and applied torque, 𝑇 in accordance to Equation (7) [1].

𝑇𝑓 𝑠(𝑇, 𝜔) = {𝑇 if 𝜔=0 and |𝑇| < 𝑇𝑐
𝑇𝑐𝑠𝑖𝑔𝑛(𝜔) otherwise (7)

The dynamic friction torque, 𝑇𝑓 𝑣 and back electromotive torque, 𝑇𝑒𝑚𝑝 are both linearly dependent on the throttle
angular velocity, 𝜔 [1].

This model results in the relation between control signal, 𝑢 and throttle angle, 𝜃 illustrated in Figure 4 [1].

Figure 4: Control signal, 𝑢 as function of throttle angle, 𝜃 [1].

2.3 Vehicle Model

This subsystem (see Figure 5) is a part of the full system and gives the vehicle an inertia and weight. Giving the vehicle
dynamics further helps with simulating how a vehicle behaves in the real world.

TSRT10 Automatic Control, Project Course
Design Specification

5



CDIO: Machine Learning and Adaptive
Control for Improving Servo Performance

December 12, 2022

Figure 5: An overview of the vehicle subsystem.

2.4 Drive Cycles and Driver Model

To generate a reference throttle angle different drive cycles will be used. A drive cycle generates a target velocity,
target acceleration and which gear to use. This will be translated into a reference value for the throttle through the
simulated model of the vehicle. Shown in Figure 6 is one example of how a drive cycle could look, in the example the
EUDC drive cycle is used.

Figure 6: EUDC drive cycle is one of the drive cycles to be used in the simulation.

TSRT10 Automatic Control, Project Course
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The driver model (see Figure 7) translates the demanded speed and the actual speed of the simulated vehicle into
pedal actions. The most important signal is the reference value for the acceleration pedal position. This will later be
translated into throttle angle.

Figure 7: Simulink schematic of the driver.

2.5 Clutch and gearbox

To simulate the cut off in power when disengaging the clutch a subsystem is implemented to give the characteristics.
Further dynamics such as inertia to/from the engine is also handled in this subsystem (see Figure 8).

TSRT10 Automatic Control, Project Course
Design Specification
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Figure 8: Simulink schematic of Clutch and gearbox.

2.6 ECU Model

The electronic control unit, ECU, acts as the computer for the simulated engine converting driver inputs to engine
control signals. This is a vital component for this project since it is responsible for converting the pedal position
from the driver to a reference angle, 𝛼𝑟𝑒𝑓 , for the throttle. This is done using the pedal position, current engine speed
and pressures in the engine. This controller is based on both feed forward using a model of the air flow through the
cylinders and a feedback loop with a regular PID-controller.

Further actions that the ECU handles are the boost controller if a turbocharger is present in the engine and the injection
time for each cylinder to minimize knock and also keep the 𝜆 as close to 1 as possible (see Figure 9).

TSRT10 Automatic Control, Project Course
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Figure 9: Simulink schematic of ECU.

2.7 Engine Model

Engine model refers to the examining engine model in the course TSFS09 1 (see Figure 10). This is a model of an
engine with some simplifications and linearization to optimize between performance and computing time. The model
is constructed in the Matlab extension Simulink.

Within the model there are a few subsystem that provides models for components in the engine. For this project
the significant part is to be spent on increasing the precision of the throttle and therefore the other subsystems are of
lesser importance. The main function of the model will for this project to give a desired 𝛼 which is to be applied to the
physically real throttle.

1 The engine Simulink model is provided by Vehicular Systems Institution at Linköpings University.
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Figure 10: An overview of the complete engine block done in Matlab/Simulink. The model includes fuel injector, gas pedal,
throttle, intake manifold, cylinder, turbocharger and lambda sensor.

3 HARDWARE

In this chapter all hardware for the project is described. This includes test throttles, microcontroller actuators and
sensors.

3.1 Throttle

The main components of the project will be two throttles. The first throttle is supplied by the supervisor and it is a
throttle from a Volvo VEA engine (exact model is not yet determined). The second thottle is provided by the customer,
Aurobay, and has been used 350,000 km in field tests. Therefore neither of the throttles are to be designed by the group.

The throttles have a motor and two potentiometers for measuring the current angle. The reason for having two sensors
is to have a backup in case something goes wrong with measurements. These potetntiometers give a voltage between
their respective offset voltage at fully closed up to about 5V at fully open. The offset voltage is different for the two
sensors and could differ between different throttles, why is is a good idea to measure and calibrate it before starting
any measurements.

Each of the throttles has six connections: Two for power to the motor, one ground, one 5V power to the potentiometers
and two signals from the potentiometers.

3.2 H-bridge

To transform the PWM signals from the Raspberry Pi to a motor current we will use the H-bridge of model AEK-
MOT-2DC70S1 [6]. It can drive several motors simultaneously, but only one will be necessary for this project. To

TSRT10 Automatic Control, Project Course
Design Specification

10



CDIO: Machine Learning and Adaptive
Control for Improving Servo Performance

December 12, 2022

work properly it will need three signals; motor clockwise, motor anticlockwise and PWM. The two first must be set
opposite to each other for the motor to work.

3.3 Analog to digital converter

The Analog to Digital Converter (hereby noted ADC) to be used in the project is the model ADS1115. It is a 16-bit
resolution converter with I2C communication interface [5]. For this project only onechannel is needed, and they will
be connected to oneof the two potentiometers on the throttle. The I2C interface will be connected to the Raspberry Pi.

Important for the ADC is to have a stable reference voltage. The primary idea is to drive it from the 5 V voltage
regulator, which is the same as the voltage for the potentiometers reading the throttle angle. One possible problem
with this setup it that the ADC only uses discrete steps for its max voltage, and the closest above 5V is 6.144V. Also,
the ADC is constructed to also handle negative voltage, why the 16-bit resolution will be diminished. Each step is
𝐹𝑆/215 where 𝐹𝑆 = 6.144𝑉 so this means a resolution of 0.1875mV per step ideally.

The ADC can also work in different speeds, with the fastest being 860 conversions/second. There is however more
noise when the ADC works faster, why one idea is to use the slower 475 conversion/second instead. If the loop is to
run in 500 Hz this is actually a bit to slow, but it is considered not to be a problem as it is almost as fast as the control
loop. The ADC speed will be decided after recording data at both speeds and comparing their respective variance.

3.3.1 I2C for the ADC

Specifications on how to use the I2C protocol with the ADC can be found in the datasheet [5]. The protocol is
standardized why the Raspberry Pi will have functions to handle the low level functionality. One important note is
however the address selection, which is done by connecting the address pin ADDR on the ADC to either GND, VDD,
SDA or SCL. It is recommended to not use SDA if possible, and there are not further requirements since no more
addresses are in use. The choice was made to GND. This gives the ADC the address 1001000 in binary or 0x48 in
hexadecimal.

3.4 Raspberry Pi

Raspberry Pi is a small computer with general purpose input/output (GPIO) pins [7]. Some of these pins can be
configured as an I2C interface to communicate with the ADC. How to connect the pins to the I2C is described in
Table 2. The GPIO pins can also be used to send a PWM signal, which is required to send commands to the H-bridge.
PWM can be generated on all GPIO pins, so there is a free choice which one to use. GPIO18 is chosen for the PWM
generation which is pin 12 on the Raspberry Pi. The H-bridge also requires two connections for motor direction, and
they were chosen as GPIO17 as GPIO27 mapping to pins 11 and 13 respectivly.

Table 2: I2C connections on Raspberry Pi.
Signal Pin
3.3V 1
SDA1 3
SCL1 5
GND 9

TSRT10 Automatic Control, Project Course
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The Raspberry Pi also runs a Linux operational system and can be connected to WiFi. The Raspberry Pi can either be
connected via USB or via Wifi to any computer running Matlab. These features make it ideal for using as a connection
between the physical actuators and the software simulation. The version used in this project is Raspberry Pi model 3
B+.

3.4.1 Serial communication

The Raspberry Pi will communicate with Matlab using a serial UART scheme. The UART scheme has several
parameters to set for specifying the communication and they are listed here:

• Baudrate: 115200 bps

• Stopbits: 1 bit

• Parity bit: None

• Endian: Little-endian

• Type: Single precision float number

Further it is planned to send commands as a PWM percentage numbered from -100 to 100 from Matlab to the
Raspberry and to send angles from the Raspberry Pi as a percentage from 0 to 100 back to Matlab. One problem
that can arise is if there is to much data to send, in which case this has to be re-evaluated.

4 DYNAMIC PARAMETER IDENTIFICATION

The control system shall be able to dynamically identify necessary parameters to make a complete plot of the hysteresis
as seen in Figure 4 with a limited amount of data.
Measured data points are determined to be in one of the six regions outlined in Figure 11 depending on the current
angle 𝜃 and whether the throttle is currently ramping up or down. Then the parameters in Equation (6) can be found
from the measured data points depending on what regions the measured data points are in. The hysteresis will then be
updated every time a new parameter estimation is made. Important to note that only measurement points where the
throttle angle 𝜃 change are relevant as the point otherwise is "within" the hysteresis and can thus not be mapped to a
region in Figure 11.

TSRT10 Automatic Control, Project Course
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Figure 11: Typical hysteresis for the throttle [1].

Data points in the "Ramp up over lh" and "Ramp down over lh" can be used to determine 𝑘+ (see Equation (6)
and Figure 3) which equals the gradients of the regions (that should be roughly equal). Measurement data from these
regions can also be used to find the points 𝐴3 and 𝐵3 (see Figure 11) which can be found by finding the extrapolated
values of the "Ramp up over lh" and "Ramp down over lh" regions at the angle 𝜃+

𝑙ℎ (see Equation (6) and Figure 3).
The points 𝐴3 and 𝐵3 can then in turn be used to determine 𝑚+

𝑙ℎ see Equation (6) and Figure 3) by using Equation (8).

𝑚+
𝑙ℎ = 𝐴3 + 𝐵3

2 (8)

Data points in the "Ramp up below lh" and "Ramp down below lh" can be used to determine 𝑘− (see Equation (6)
and Figure 3) which equals the gradients of the regions (that should be roughly equal). Measurement data from these
regions can also be used to find the points 𝐴2 and 𝐵2 (see Figure 11) which can be found by finding the extrapolated
values of the "Ramp up below lh" and "Ramp down below lh" regions at the angle 𝜃−

𝑙ℎ (see Equation (6) and Figure 3).
The points 𝐴2 and 𝐵2 can then in turn be used to determine 𝑚−

𝑙ℎ (see Equation (6) and Figure 4) by using equation (9).

𝑚−
𝑙ℎ = 𝐴2 + 𝐵2

2 (9)

Data points in the "Ramp up during lh" and "Ramp down during lh" can be used to determine the angles 𝜃+
𝑙ℎ and

𝜃−
𝑙ℎ (see Equation (6) and Figure 4) by finding the points where these regions intersect the other regions (see Figure

11). The angle 𝜃𝑙ℎ can then be found by using Equation (10).

𝜃𝑙ℎ =
𝜃+

𝑙ℎ + 𝜃−
𝑙ℎ

2 (10)
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5 CONTROL SYSTEM

In the following section the control problem is stated and some initial ideas on how to approach the problem are
disclosed.

5.1 General Design of the Control System

Simulink will handle the computational part of the control system. A reference angle is fed from the motor simulation
to the control system. The control system is also fed the actual angle from the physical throttle. From these values
the control system will produce a desired PWM signal from -100 to 100. Feedback from the potentiometers is sent
through the Raspberry pi to the Simulink controller system at a rate of 500 Hz.

5.2 Friction Compensation

Compensating to the throttle friction outlined in Equation (7) can be problematic as it could make the control very
sensitive around the reference angle [1]. Therefore it might be necessary to add a deadzone when the angle is close
to the reference angle [1]. It is also important to make sure the friction overcomes the coulomb friction 𝑇𝑐 outlined in
Equation (7). Therefore a modified version of Equation (7) is proposed to be used as friction reference as outlined in
Equation (11) where 𝑒𝜃 is the angle error and 𝑘𝑡𝑓 is a constant slightly above 1 to make sure that the friction overcome
the coulomb friction [1].

�̃�𝑓 =
⎧{{
⎨{{⎩

0 𝑖𝑓 |𝑒𝜃 | ≤ 𝜃𝑑
𝑘𝑡𝑓 ⋅ 𝑇𝑐

𝜃−𝜃𝑑
𝜃𝑟

𝑠𝑔𝑛(𝑒𝜃) 𝑖𝑓 𝜃𝑑 < |𝑒𝜃 | ≤ 𝜃𝑟 + 𝜃𝑑
𝑘𝑡𝑓 ⋅ 𝑇𝑐 𝑖𝑓 |𝑒𝜃 | > 𝜃𝑟 + 𝜃𝑑

(11)

Equation (11) result in the friction compensation outlined in Figure 12[1].

Figure 12: The friction compensator outlined in equation (11) [1]. ̃𝑇𝑐 = 𝑘𝑡𝑓 ⋅ 𝑇𝑐
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An alternative or supplement to this may be filtering through a low-pass filter to remove oscillations [10].

5.3 Control Design Methods

An online adaptive control algorithm is required to address the problem of varying parameters during operation. One
way to deal with varying parameters is to implement a self tuning controller which continuously estimates the plant
parameters and adjusts the control law based on current estimates. A self tuning regulator can utilize direct adaptation
of controller parameters or indirect adaptation by separating the parameter estimation and the controller design. A
schematic overview of the adaptive control algorithm is presented in Figure 13.

Figure 13: An overview of the general idea of a self tuning regulator.

Another solution to handle uncertainties in system parameters is to implement a model reference adaptive control
(MRAC) system. In this controller the closed-loop behaviour of the plant is determined by the reference model and the
adjustment mechanism adapts the controller parameters to match the output of the plant to the model. The adjustment
mechanism can be chosen, and two common methods are Lyapunov stability and the MIT rule using gradient descent.
A schematic overview of the MRAC algorithm is presented in Figure 14.

TSRT10 Automatic Control, Project Course
Design Specification

15



CDIO: Machine Learning and Adaptive
Control for Improving Servo Performance

December 12, 2022

Figure 14: An overview of the general idea of an adaptive controller using MRAC.

5.4 Anti Windup

The hysteresis (see figure 4) provide a challenge for integrators in the control system. This is because the coulomb
friction (𝑇𝐶) hinders the throttle from moving unless the signal is strong enough. Thus the integrator might windup
when there is a small continuous angle error (𝑒𝜃) as the throttle does not move during an extended amount of time.
This windup might result in overshoots.
A solution to this is to implement anti-windup to the integrator. One example of anti-windup is to cap the integrator to
a minimum and maximum value [10].

5.5 Bump-less Transfer

The controller will most likely need to use different values on the control parameters depending on if the angle is
above or below the limp home region (see section 1.4.1) or not.
This will require the controller to implement a bump-less transfer when the control parameters change values.One
way to achieve bump-less transfer with new pid parameters 𝐾𝑃𝑛𝑒𝑤, 𝐾𝐼𝑛𝑒𝑤 and 𝐾𝐷𝑛𝑒𝑤 (see section 1.4.2) is to adapt
the integral part of the pid to keep the control signal continous with the previous control signal generated with the old
pid parameters 𝐾𝑃𝑜𝑙𝑑, 𝐾𝐼𝑜𝑙𝑑 and 𝐾𝐷𝑜𝑙𝑑 [11]. This principle is demonstrated in equation (12) where the pid parameters
change at the time 𝑡𝑠.

𝑢(𝑡) =
⎧{
⎨{⎩

𝐾𝑃𝑜𝑙𝑑𝑒(𝑡) + 𝐾𝐼𝑜𝑙𝑑 ∫𝑡
0 𝑒(𝜏)𝑑𝜏 + 𝐾𝐷𝑜𝑙𝑑

𝑑𝑒(𝑡)
𝑑𝑡 𝑡 < 𝑡𝑠

𝐾𝑃𝑛𝑒𝑤𝑒(𝑡) + 𝐾𝐼𝑛𝑒𝑤 (∫𝑡
0 𝑒(𝜏)𝑑𝜏 − 𝐾𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟) + 𝐾𝐷𝑛𝑒𝑤

𝑑𝑒(𝑡)
𝑑𝑡 𝑡 ≥ 𝑡𝑠

(12)

The constant 𝐾𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 are the adapted in accordance to equation (13) to ensure a bump-less transfer.

𝐾𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑜𝑟 = 1
𝐾𝐼𝑛𝑒𝑤

((𝐾𝑃𝑜𝑙𝑑 − 𝐾𝑃𝑛𝑒𝑤) 𝑒(𝑡𝑠) + (𝐾𝐼𝑜𝑙𝑑 − 𝐾𝐼𝑛𝑒𝑤) ∫
𝑡𝑠

0
𝑒(𝜏)𝑑𝜏 + (𝐾𝐷𝑜𝑙𝑑 − 𝐾𝐷𝑛𝑒𝑤) 𝑑𝑒(𝑡𝑠)

𝑑𝑡 ) (13)
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6 DYNAMIC UPDATING OF FRICTION PARAMETERS

The goal of this project is to improve the throttle regulator by using dynamic values on the friction models outlined in
Equations (6) and (7).
Parameter estimation in closed-loop systems introduces convergence difficulties and loss of identifiablilty if low order
feedback is used. In low order feedback systems the regressor matrix must be linearly independent to avoid loss of
identifiability. It is also possible to use higher order feedback to avoid loss of identifiablility. To avoid unwanted
behaviour of the controller, the controller parameters should be adapted gradually.

Machine learning methods will be used however it is still unclear to what extent. But these methods will be explored
when more data and knowledge about the system has been acquired.

6.1 Machine Learning with Nonlinear Kalman Filter

One method of handling the dynamic updating of friction parameters is with a nonlinear Kalman filter. It is however
not certain that a Kalman filter will be able to handle the nonlinearities in the system.

6.2 Support Vector Machine

Support vector machines is a method for classifying in machine learning. It works by finding borders between inputs
and their respective class. In our case this could be used to classify if at a specific angle and signal the throttle is
moving or not. By recording several of these points and process them the support vector machine should be able to
give the hysterisis model of the throttle as in figure 11.

6.3 Neural Network for Finding Model

As a final step one could try to give the entire problem to a well designed neural network. By having enough data it is
possible the network will be able to find the specific parameters continuously from data while driving.

A neural network utilizes "Nodes" that only sends data to the next node if the data it receives is above its "threshold"
in accordance to Equation (14) wherein 𝑤 are weights, 𝑥 are nodes data is received from, 𝑏 is a bias and 𝑓 (𝑥) is the
sent data [9].

𝑓 (𝑥) = {1 𝑖𝑓 ∑𝑚
𝑘=1 𝑤𝑘𝑥𝑘 + 𝑏 ≥ 0

0 𝑖𝑓 ∑𝑚
𝑘=1 𝑤𝑘𝑥𝑘 + 𝑏 ≤ 0 (14)

The network are then built up in a structure with "input layer" nodes which are the nodes with known inputs and which
sens data to the "multiple hidden layers" who in turn send the final data to an "output layer" with the sought data (see
Figure 15)[9].
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Figure 15: An overview of how neural networks operate.

6.3.1 Recurrent Neural network

To reduce the convergence time of the adaptive controller a recurrent neural networkc(RNN) could be implemented
for an improved initial guess of the system parameters and thereby controller parameters. This guess could consider
the current run time of the engine, outside factors and the value the parameters most likely converge to for this
specific system. A RNN has some disadvantages though. Training them takes a lot of time and it has problems with
vanishing gradients. The time aspect might prove problematic since the throttle should update its parameters in real
time. Vanishing gradients can cause problems with long data sequences.

6.3.2 Artificial Neural network

Another possibility to implement machine learning in this project is to use an artificial neural network (ANN) for
parameter estimation or to implement an ANN as a controller. To use an ANN as a controller there is a need for
extra steps to verify the safety of the system. One way to ensure the safe operating of the system is to implement a
Simplex Architecture. Another potential drawback with using an ANN as a controller is the fact that they require a lot
of computational power.

7 IMPLEMENTATION

7.1 Simulation Environment

The simulations environment used will be Simulink. Simulink is used since the vehicle model is already implemented
and it is a very powerful software for control related tasks. It is also a software which all members in the group have
extensive experience with.
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The throttle should be able to run during simulations as "Hardware In the Loop" (HIL). This means that the throttle is
actuated as if it was in the engine when it in reality isn’t. Instead the engine and all the other connected components
are simulated by the other subsystems in the project.

7.2 Regulator Implementation

The new regulator will be implemented into Simulink and first be able to run on a Raspberry Pi. However if this
software is to used in the engine it also needs to be able to be implemented into the ECU.
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8 FUTURE WORK

8.1 Throttle

8.2 Control system

8.3 Dynamic updating of friction parameters
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