

Test Plan

Gabriel Anderberg Karl Hilding Gustaf Härold Klara Kastenson Tai Ta Michael Yasemi

December 16, 2022

Version 1.0

Status

Reviewed	Gustaf Härold	November 20, 2022
Approved	Martin Skoglund	November 20, 2022

TSRT10 Reglerteknisk projektkurs Test Plan Oticon gusha385@student.liu.se

Project Identity

Group E-mail:	gusha385@student.liu.se
Homepage:	http://www.isy.liu.se/tsrt10/group
Orderer:	Martin Skoglund, Linköpings universitet Phone: +46 13 281890 E-mail: martin.skoglund@liu.se
Customer:	Sergi Rotger Griful, Eriksholm Research Centre Phone: - E-mail: segr@eriksholm.com
Supervisor:	Johanna Wilroth Phone: +4670-894 48 49 E-mail: johanna.wilroth@liu.se
Course Responsible:	Daniel Axehill Phone: +46 13 28 40 42 E-mail: daniel.axehill@liu.se

Participants of the group

Name	Responsible	E-mail
Tai Ta	Responsible for the Documentation (DOC)	taita693@student.liu.se
Klara Kastensson	Responsible for the Design (DES)	klaka376@student.liu.se
Karl Hilding	Responsible for the Testing (TEST)	karhi203@student.liu.se
Michael Yasemi	Responsible for the Hardware (HW)	husya078@student.liu.se
Gabriel Anderberg	Responsible for the Software (SW)	gaban592@student.liu.se
Gustaf Härold	Project Leader (PL)	gusha385@student.liu.se

CONTENTS

1	Introduction 1			
2	G3-i	mplementation 1		
3	Simu	Ilation Environment 1		
	3.1	Sound physics		
	3.2	Implementation of new sensors		
	3.3	Simulation validation		
	3.4	Usability		
4	Eye	Tracking 4		
	4.1	Saccade detection		
	4.2	Fixation detection		
	4.3	Smooth pursuit detection		
	4.4	Listening detection using pupil dilation 5		
	4.5	Real-time data		
5 Tracking and Localization 6				
	5.1	Real-time optimization		
	5.2	Distance Perception		
	5.3	New statistical tracking method		

DOCUMENT HISTORY

Version	Date	Changes made	Sign	Reviewer
0.1	2022-10-10	First draft.	All	GH
0.2	2022-11-04	Second draft.	All	GH, KK
1.0	2022-11-20	First version.	All	GH

TSRT10 Reglerteknisk projektkurs Test Plan Oticon gusha385@student.liu.se

1 INTRODUCTION

2 G3-IMPLEMENTATION

Test	Requirement	Description
1	4	Test if the existing module for orientation estimation works with G3.
2	5	Test if the existing module for localization estimation works with G3.
3	6	Test if the face mesh-module works with G3.
4	10	Test if it is possible to save calibration data from the forward-facing
		camera.
5	11	Test if it is possible to specify which forward-facing calibration data
		should be used.

3 SIMULATION ENVIRONMENT

3.1 Sound physics

Test	Requirement	Description
6	20-25	Test if sensor noise with the distributions given in requirement 20-25
		can be implemented.
7	20-25	Test if sensor noise with the distributions given in requirement 20-25
		can be added with the IMU and magnetometer data.
8	20-25	Test if sensor noise with the distributions given in requirement 20-25
		can be added with the eye-tracking data
9	20-25	Test if it is possible to add the noises generated in Test 2 to an arbitrary
		sound source in the sim-env.

3.2 Implementation of new sensors

Test	Requirement	Description
10	26	Test if it is possible to generate accelerometer data in the sim-env.
11	26	Test if it is possible to generate gyroscope data in the sim-env.
12	27	Test if it is possible to generate magnetometer data in the sim-env.
		cont. on next page

cont. f	cont. from previous page		
Test	Requirement	Description	
13	26	Test if the bias for the accelerometer has been correctly calibrated by asserting that the IMU measures an acceleration of $9.8 m/s^2$ when at rest.	
14	26	Test if the bias for the gyroscope has been correctly calibrated by assert- ing that the IMU measures an angular velocity of $0.0 m/s$ when at rest.	

3.3 Simulation validation

Test	Requirement	Description
15	16	Test if it is possible to obtain ground truth data for target tracking mod-
		ules from the sim-env.
16	17	Test if it is possible to obtain ground truth data for newly developed
		modules from the sim-env.
17	18	Test if it is possible to manually set the trajectory of the gaze vector in
		the sim-env.
18	19	Test if it is possible to simulate a scenario where there are 5 or more
		sources of background noise being generated at the same time.

3.4 Usability

Test	Requirement	Description
19	28	Test if the functionality of the GUI is the same when resizing the win-
		dow.
20	29	Test if it is possible to terminate the simulation via the terminate button
		in the GUI.
21	30	Test if it is possible to implement the explanations mentioned in require-
		ment 30.
22	31	Test if it is possible to launch the sim-env with fewer commands than 4.
23	32	Test if it is possible to launch the GUI with fewer commands than 4.
24	33	Test if it is possible to launch the sim-env with fewer commands than 1.
25	34	Test if it is possible to launch the GUI with fewer commands than 1.
26	35	Test if it is possible to implement flags to modify the behavior of the
		program when launching the sim-env.
		cont. on next page

cont. f	rom previous page	
Test	Requirement	Description
27	35	Test if all flags in test 26 have the desired effect on the program.
28	36	Test if it is possible to implement pre-defined tests when launching the
		sim-env.
29	36	Test if it is possible to start the tests in test 28 with program flags.
30	37	Test if it is possible to make a script that installs all dependencies needed
		for the program.
31	37	Test if it is possible to make the script in test 30 run with only one
		command.

4 EYE TRACKING

4.1 Saccade detection

Test	Requirement	Description
32	43, 48	Testing the ability to detect saccades. A test program is used to induce a point of view for the user. The point of view is set as a circle on the screen of a computer. The circle shifts position and the user is to follow the circle with the eyes. The circle will only induce 20 artificial saccades above an amplitude of 10° Successfull if at least 80% of the saccades are detected.
33	43, 48	Same as test 32 but the induced artificial saccades will have no restriction of amplitude. Successfull if 80% of the saccades with an amplitude above 10° are detected.

4.1.1 Average saccade frequency

Test	Requirement	Description
34	43	Similar to test 32 but the circle will shift position with a fixed frequency.
		Successfull if the estimated average saccade frequency matches the av-
		erage of the fixed frequency of the circle with an accepted error of \pm
		0.2 [Hz].
35	43	Same as test 34 but the frequency of the circle is random. Successfull
		if the estimated average saccade frequency matches the average of the
		random frequency of the circle with a accepted error of \pm 0.3 [Hz].
36	43, 44, 48	A person using the glasses is to listen and observe one person talking.
		Successfull if an average saccade frequency is calculated and the fre-
		quency is under 0.2 [Hz].
37	43, 44, 48	Same as test 36 but with two persons talking. Successfull if Successfull
		if an average saccade frequency is calculated and the frequency is above
		0.2 [Hz].

4.2 Fixation detection

Test	Requirement	Description
38	46	Test eye fixation detection. Similar to test 32 but with a set amount of
		fixations. Count number of initiated fixations. Successfull if 90% of the
		fixations are correctly identified.
39	46	Test eye fixation saved location. Set up 7 points evenly distributed in
		the visual field of the user. The user is to fixate the eyes on each point
		from left to right. Succesfull if the fixations are displayed on the map in
		the correct order.

4.3 Smooth pursuit detection

Test	Requirement	Description
40	47	Test of smooth pursuit detection. Follow a moving object in 1 second by
		eye and see if the system will detect smooth pursuit. The object should
		have a distance of 5 meter to the users eye and have speed in range
		1 km/h to 5 km/h. Successfull if smooth pursuit is detected within 1
		second.

4.4 Listening detection using pupil dilation

Test	Requirement	Description
41	38	Test of the identification of the environment light level. Expose the
		camera to 3 widely different light intensities. Succesfull if the different
		light intensities matches the identification levels in order.
42	39, 40	Test of listening detection. The user is to focus and listen to a person
		talking. Succesfull if a pupil dilation is identified.

4.5 Real-time data

	Test	Requirement	Description
ſ	43	41, 42	Test if the data from the eye tracking system is saved without data loss.
			Successfull if the data can be retrieved from a measurement.

5 TRACKING AND LOCALIZATION

5.1 Real-time optimization

Test	Requirement	Description
44	8, 42	Simulate the movement of three targets in the sim-env and estimate its
		path. Measure the time it takes to preform each update loop in the path
		estimation and calculate the average time. The test passes if the average
		time is less than 150 ms.
45	8	Video frame rate from real-time data with SLAM activated is to be mea-
		sured. Passing test means > 23 fps with no affect on normal functional-
		ity.
46	8	If test 47 passed: Detected people exceeds 3 people.

5.2 Distance Perception

Test	Requirement	Description
47	9	The estimates from the new distance perception module will be com-
		pared with measurements from Visionen. Passing test means a MSE to
		the estimated distance from ground truth of 0.2 or lower within a range
		of 2 meters.
48	49	Eye tracking data is successfully integrated into EKF and SLAM. Pass-
		ing test means higher or equal accuracy/confidence on prediction.
49	2, 3, 50, 51	Magnetometer data is successfully integrated into EKF and SLAM.
		Passing test means higher or equal accuracy/confidence on prediction.

5.3 New statistical tracking method

Test	Requirement	Description
50	8, 9, 16, 52	Simulate movement of three targets using the sim-env according to predetermined paths. Use the data gained to estimate the paths using the existing methods and calculate the estimations accuracy against the ground truth. The test passes if the accuracy is 90% or higher
		cont. on next page

cont. f	cont. from previous page		
Test	Requirement	Description	
51	8, 9, 16, 52	Preform the test in test 50 with the new statistical method. Compare	
		the results of the two tests. The test passes if the accuracy of the new	
		method is equal to or higher than the old method.	
52	8, 9, 16, 52	Record data of at least two speakers moving in Visionen using G3. Use	
		the data gained to estimate the paths using the existing methods and	
		calculate the estimations accuracy against the Qualisys measurement.	
		The test passes if the accuracy is 90% or higher.	
53	8, 9, 16, 52	Preform the test in test 52 with the new statistical method. Compare	
		the results of the two tests. The test passes if the accuracy of the new	
		method is equal to or higher than the old method.	
54	8, 49, 52	Preform the test in test 44 with the new statistical method. Compare the	
		results. The test passes if the average time of the new method is lower	
		than the old method.	