

Test Protocol

Gabriel Anderberg
Karl Hilding
Gustaf Härold
Klara Kastenson
Tai Ta
Michael Yasemi

December 16, 2022

Version 1.0

Status

Reviewed	Gustaf Härold	December 7, 2022
Approved	Martin Skoglund	December 7, 2022

Project Identity

Group E-mail: gusha385@student.liu.se

Homepage: http://www.isy.liu.se/tsrt10/group

Orderer: Martin Skoglund, Linköpings universitet

Phone: +46 13 281890

E-mail: martin.skoglund@liu.se

Customer: Sergi Rotger Griful, Eriksholm Research Centre

Phone: -

E-mail: segr@eriksholm.com

Supervisor: Johanna Wilroth

Phone: +4670-894 48 49 E-mail: johanna.wilroth@liu.se

Course Responsible: Daniel Axehill

Phone: +46 13 28 40 42 E-mail: daniel.axehill@liu.se

Participants of the group

Name	Responsible	E-mail
Tai Ta	Responsible for the Documentation (DOC)	taita693@student.liu.se
Klara Kastensson	Responsible for the Design (DES)	klaka376@student.liu.se
Karl Hilding	Responsible for the Testing (TEST)	karhi203@student.liu.se
Michael Yasemi	Responsible for the Hardware (HW)	husya078@student.liu.se
Gabriel Anderberg	Responsible for the Software (SW)	gaban592@student.liu.se
Gustaf Härold	Project Leader (PL)	gusha385@student.liu.se

CONTENTS

1	Intro	duction
2	G3-i	mplementation
3		ulation Environment
	3.1	Sound physics
	3.2	Implementation of new sensors
	3.3	Simulation validation
	3.4	Usability
4	Eye '	Tracking
	4.1	Saccade detection
	4.2	Fixation detection
	4.3	Smooth pursuit detection
	4.4	Listening detection using pupil dilation
	4.5	Real-time data
5	Trac	king and Localization
	5.1	Real-time optimization
		Distance Perception
	5.3	New statistical tracking method

DOCUMENT HISTORY

Version	Date	Changes made	Sign	Reviewer
0.1	2022-12-01	First draft.	All	GH
1.0	2022-12-07	First version.	All	GH

1 INTRODUCTION

2 G3-IMPLEMENTATION

Test	Description	Pass/Fail	Conclusion
1	Test if the existing module for orientation esti-	-	The requirement connected to this test was
	mation works with G3.		renegotiated. The test was therefore not pre-
			formed.
2	Test if the existing module for localization es-	-	The requirement connected to this test was
	timation works with G3.		renegotiated. The test was therefore not pre-
			formed.
3	Test if the face mesh-module works with G3.	-	The requirement connected to this test was
			renegotiated. The test was therefore not pre-
			formed.
4	Test if it is possible to save calibration data	-	The requirement connected to this test was
	from the forward-facing camera.		renegotiated. The test was therefore not pre-
			formed.
5	Test if it is possible to specify which forward-	-	The requirement connected to this test was
	facing calibration data should be used.		renegotiated. The test was therefore not pre-
			formed.

3 SIMULATION ENVIRONMENT

3.1 Sound physics

Test	Description	Pass/Fail	Conclusion
6	It was tested if it was possible to implement	Pass	It was possible to implement sensor noise with
	sensor noise with the distributions given in re-		the given distributions
	quirements 20-25		
7	It was tested if it was possible to add sensor	Partial pass	It was possible to add sensor noise to the IMU.
	noise with the distributions given in require-		Magnetometer data is unavailable, so it was
	ments 20-25 to IMU and Magnetometer		impossible to add noise to the magnetometer
			data.
8	Not implemented	-	There is no functionality to add sensor noise to
			eye tracking data.
9	Not implemented	-	There is no functionality to add sensor noise to
			an arbitrary sound source in the sim-env.

3.2 Implementation of new sensors

Test	Description	Pass/Fail	Conclusion
10	It was tested if it is possible to generate and	Pass	It was possible to generate and save accelerom-
	save accelerometer data in the simulation envi-		eter data.
	ronment.		
11	It was tested if it is possible to generate and	Pass	It was possible to generate and save gyrometer
	save gyroscope data in the simulation environ-		data.
	ment.		
12	It was tested if it is possible to generate and	Partial pass	It was possible to generate magnetometer data
	save magnetometer data in the simulation en-		in the simulation environment. But it was im-
	vironment.		possible to save the data.

3.3 Simulation validation

Test	Description	Pass/Fail	Conclusion
15	It was tested if it is possible to obtain ground	Pass	It is possible to generate and save IMU and
	truth data for target tracking modules from the		gaze-vector data from the sim-env. It is also
	sim-env.		possible to obtain ground truth data about the
			speakers and users' position in the sim-env.
16	Test if it is possible to obtain ground truth data	-	This test was never conducted due to time con-
	for newly developed modules from the sim-		straints.
	env.		
17	It was tested if it was possible to manually set	Pass	In path-controller file adding different cases of
	the trajectory of the gaze-vector in the sim-env.		body and head movement the simulation could
			be pre-determined.
18	Not tested	-	Due to lack of time this was never tested.

3.4 Usability

Test	Description	Pass/Fail	Conclusion
19	Not implemented	-	No functionality of the GUI has been modi-
			fied.
20	Not implemented	-	Same as test 19.
21	Not implemented	-	Same as test 19.
			cont. on next page

	rom previous page	n	
Test	Description	Pass/Fail	Conclusion
22	Test if it is possible to start the sim-env with	Pass	It is possible to start the sim-env with 1 com-
	less than 4 commands		mand.
23	Test if it is possible to start the GUI with less	Pass	It is possible to start the GUI with 1 command.
	than 4 commands		
24	Test if it is possible to start the sim-env with 1	Pass	See test 22.
	command		
25	Test if it is possible to start the GUI with 1	Pass	See test 23.
	command		
26	Test if it is possible to modify the behavior of	Pass	It is possible to launch different simulations by
	the program when launching the program us-		using flags when starting the simulation.
	ing flags		
27	Test if the flags in requirement 26 has the de-	Pass	The flags have the desired effect.
	sired effect on the program		
28	Test if it is possible to implement pre-defined	-	This test was never conducted due to time con-
	tests when launching the sim-env.		straints.
29	Test if it is possible to start the tests in test ??	-	This test was never conducted due to time con-
	with program flags.		straints.
30	Test if is possible to make a script that gener-	Pass	It was possible to make a script that generates
	ates all dependencies for the sim-env and app.		all dependencies needed to run all software in
			the repository.
31	Test if it was possible to make the script in test	Pass	It was possible to make the script run with only
	30 run with only one command		one command.

4 EYE TRACKING

4.1 Saccade detection

Test	Description	Pass/Fail	Conclusion
32	Testing the ability to detect saccades with amplitude restriction	Pass	At least 80% of the saccades are detected.
33	Testing the ability to detect saccades.	Pass	Same as above but with slightly lower detection rate.

4.1.1 Average saccade frequency

Test	Description	Pass/Fail	Conclusion
34	Testing the ability to calculate the average sac-	Pass	A satisfactory frequency is calculated.
	cade frequency at constant frequency.		
35	Testing the ability to calculate the average sac-	Pass	A satisfactory is calculated.
	cade frequency at random frequency.		
36	Testing the ability to calculate the average sac-	Pass	A frequency under 0.2 [Hz] is calculated.
	cade frequency when the user is listening to		
	one person.		
37	Testing the ability to calculate the average sac-	Pass	A frequency above 0.2 [Hz] is calculated.
	cade frequency when the user is listening to		
	two persons talking.		

4.2 Fixation detection

Test	Description	Pass/Fail	Conclusion
38	Testing the ability to detect fixations	Pass	Above 90% fixations detected.
39	Testing the ability to display earlier locations	Fail	Failed to accurately detect directions.
	with eye fixations.		

4.3 Smooth pursuit detection

Test	Description	Pass/Fail	Conclusion
40	Testing smooth pursuit detection.	Pass	Detects smooth pursuit within the specified time limit but the event is inaccurately interrupted by both fixations and saccades.

4.4 Listening detection using pupil dilation

Test	Description	Pass/Fail	Conclusion
41	Test of the identification of the environment	Pass	Even if the test has been passed its difficult to
	light level. In order to achieve accurate		say if this feature is feasible right now with the
	measurment, the light is distributed homoge-		Tobii glasses G2. The camera dont provides
	neously and the camera is prevented from fac-		brightness specificly.
	ing any light sources.		
42	Test of listening event detection.	Fail	The result was not satisfactory.

4.5 Real-time data

Test	Description	Pass/Fail	Conclusion
	Test if the data from the eye tracking system is saved without data loss.	Pass	Data is saved without loss.

5 TRACKING AND LOCALIZATION

5.1 Real-time optimization

Test	Description	Pass/Fail	Conclusion
44	Simulate the movement of three targets in the	-	This test was never conducted due to time con-
	sim-env and estimate its path. Measure the		straints.
	time it takes to preform each update loop in		
	the path estimation and calculate the average		
	time. The test passes if the average time is less		
	than 150 ms.		
45	Video frame rate from real-time data with	-	This test was never conducted due to time con-
	SLAM activated is to be measured. Passing		straints.
	test means > 23 fps with no affect on normal		
	functionality.		
46	If test 47 passed: Detected people exceeds 3	-	This test was never conducted due to time con-
	people.		straints.

5.2 Distance Perception

Test	Description	Pass/Fail	Conclusion
47	The estimates from the new distance percep-	-	This test was never conducted due to time con-
	tion module will be compared with measure-		straints.
	ments from Visionen. Passing test means a		
	MSE to the estimated distance from ground		
	truth of 0.2 or lower within a range of 2 me-		
	ters.		
48	Eye tracking data is successfully integrated	Pass	
	into EKF and SLAM. Passing test means		
	higher or equal accuracy/confidence on predic-		
	tion.		
49	Magnetometer data is successfully integrated	-	The requirement connected to this test was
	into EKF and SLAM. Passing test means		renegotiated. The test was therefore not pre-
	higher or equal accuracy/confidence on predic-		formed.
	tion.		

5.3 New statistical tracking method

Test	Description	Pass/Fail	Conclusion
50	Simulate movement of three targets using the sim-env according to predetermined paths. Use the data gained to estimate the paths using the existing methods and calculate the estimations accuracy against the ground truth. The test passes if the accuracy is 90% or higher.	-	This test was never conducted due to time constraints.
51	Preform the test in test 50 with the new statistical method. Compare the results of the two tests. The test passes if the accuracy of the new method is equal to or higher than the old method.	-	This test was never conducted due to time constraints.
52	Record data of at least two speakers moving in Visionen using G3. Use the data gained to estimate the paths using the existing methods and calculate the estimations accuracy against the Qualisys measurement. The test passes if the accuracy is 90% or higher.	Pass	No new data was able to be recorded, but old test data fulfilling the requirements was used. The accuracy was within the passing bounds.
53	Preform the test in test 52 with the new statistical method. Compare the results of the two tests. The test passes if the accuracy of the new method is equal to or higher than the old method.	Pass	Both the old and the new method achieved the same accuracy in preformed tests.
54	Preform the test in test 44 with the new statistical method. Compare the results. The test passes if the average time of the new method is lower than the old method.	-	This test was never conducted due to time constraints.