
ADAPT

AUTONOMOUS DYNAMIC OBSTACLE

DETECTION AND PATH PLANNING TRUCK

I
N
T
R
O

RESULTS

Implement planning algorithms for handling dynamic obstacles

Implement prediction models for estimation of movement

Integration of modules into the system’s architecture

Visualizing the integrated system in simulations and Visionen

All the modules work separately. The IMM-filter has been successfully implemented in ROS. The motion planner could not be
implemented due to dependencies from previous years, which are no longer functional. The MPC-controller is defined and works well in
MATLAB, but is not fully functional in ROS.

A new dynamic motion planner has been developed in the project.
The planner receives a pre-planned path from a previously
developed static motion planner and observations of dynamic
obstacles from the IMM-filter. While the truck is driving, it
continuously calculates an acceleration profile and combines this
with the path to create a trajectory. The trajectory is updated such
that it is void of dynamic obstacles in the environment.

TThis functionality is realized by utilizing a Partially Observable
MarMarkov Decision Process (POMDP). In a POMDP, the consequences
(observations) after taking specific actions are simulated and given a
specific reward. After simulating a tree of actions and observations
the branch with the highest accumulated reward is selected and
thus an acceleration profile is generated. The POMDP is implemented
with the online solver DESPOT, which is compatible with ROS. A plot
of the motion planner is shown in Figure 3.

__

MARTIN AXELSSON JESPER BARRENG ISAK BOKNE
CHARLIE ELF TERESE JOHANSSON ALFRED SUNDSTEDT EMIL WIMAN

PROJECT GOALS

The purpose of implementing an IMM-filter is to
estimate obstacles movements and behaviours. This is
fundamental to reduce collisions and important
iinformation when planning a route. The implemented
IMM-filter predicts future states of pedestrians and
ground vehicles such as a remote car. This is done by
utilizing several motion models and determining the
most probable using probability theory.

The IMM-filter should then supply the dynamic motion
planner with a future trajectory of the dynamic
obobstacles based on the most probable motion model.
This aims to lower the mean squared error. It is
presumed that pedestrians and ground vehicles can
enter the modes of idle, moving forward with constant
velocity and keeping constant velocity while doing a
coordinated turn. It is also presumed that ground
vehicles can enter a mode of constant acceleration.
TThe code for the IMM-filter is handwritten and
integrated with ROS. A visualization of the IMM-filter is
shown in Figure 2.

IMM-FILTER DYNAMIC MOTION PLANNER MPC-CONTROLLER

Figure 1: The LEGO truck

Currently, autonomous vehicles is a hot topic in
academia and academia and industry. At LiU, there is an ongoing CDIO
project, Autonomous Truck with a Trailer, with the aim
to create an education and research platform within the
area. The system consists of a LEGO truck equipped
with an EV3 control unit and a Raspberry Pi. During this
year’s edition of the project, the task has been to
iimprove the interaction with dynamic obstacles as well
as developing a fast MPC-controller.

Figure 2: The IMM-filter Figure 3: The motion planner Figure 4: The MPC-controller

The truck’s MPC-controller was originally based on
a race car implementation. Since the dynamics
diers, constrains are defined dierently to solve
this nonlinear problem with a linear cost matrix.
As shAs shown in Figure 4, the MPC-controller follows
the track well. This solution is done in ACADOS, a
MATLAB library, and then generated to C code.
Since ROS operates with C++, the conversion is
doable. This module includes a node program that
handles the communication with ROS and an
engine program that handles the logic in the
bacbackground.

The MPC-controller takes seven states: x, y, theta,
beta2, beta3, v and kappa. The integrated module
is able to race the track forwards and backwards.

