
Autonomous Truck with Trailer December 15, 2022

Technical Documentation
Autonomous Truck with Trailer

December 15, 2022

Version 0.1

Status

Reviewed Alfred Sundstedt 2022-12-12
Approved Shamisa Shoja 2022-12-12

TSRT10 Automatic control - Project course
Technical Documentation

ADAPT
alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

Project Identity

Group E-mail: alfsu259@liu.se

Homepage: https://www.control.isy.liu.se/student/tsrt10/

Orderer: Shamisa Shoja, Reglerteknik, ISY
E-mail: shamisa.shoja@liu.se

Customer: Daniel Axehill, Reglerteknik, ISY
E-mail: daniel.axehill@liu.se

Supervisor: Carl Hynén Ulfsjöö, Reglerteknik, ISY
E-mail: carl.hynen@liu.se

Course Responsible: Daniel Axehill, Reglerteknik, ISY
E-mail: daniel.axehill@liu.se

Participants of the group

Name Responsibility E-mail
Martin Axelsson marax633@student.liu.se
Jesper Barreng Test Manager jesba281@student.liu.se
Isak Bokne Design Manager isabo438@student.liu.se
Charlie Elf chael086@student.liu.se
Terese Johansson Document Manager terjo233@student.liu.se
Alfred Sundstedt Project Leader alfsu259@student.liu.se
Emil Wiman Software Architect emiwi425@student.liu.se

TSRT10 Automatic control - Project course
Technical Documentation

ADAPT
alfsu259@liu.se

alfsu259@liu.se
https://www.control.isy.liu.se/student/tsrt10/
shamisa.shoja@liu.se
daniel.axehill@liu.se
carl.hynen@liu.se
daniel.axehill@liu.se
alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

C O N T E N T S

1 Introduction 1
1.1 Background . 1
1.2 Project goals . 1
1.3 Definition of terms . 1

2 System overview 2
2.1 Problem formulation . 3
2.2 System description . 3

3 Kinematic model 5
4 IMM-filter and motion models 8

4.1 Dynamic Obstacles . 8
4.2 Motion models . 8
4.3 IMM-filter . 9
4.4 Output to the Motion Planner . 11

5 Motion Planner 13
5.1 Dynamic motion planner . 13

6 MPC controller 16
6.1 Problem description . 16
6.2 MPC problem formulation . 16
6.3 Trajectory tracking with MPC . 17
6.4 Constraints . 17
6.5 Parameters . 19
6.6 Implementation . 20

7 Software implementation 21
7.1 ROS . 21
7.2 Packages . 21

8 Results 22
8.1 IMM-filter . 22
8.2 Motion Planner . 23
8.3 MPC Controller . 24

9 Future improvements 26
9.1 IMM-filter . 26
9.2 POMDP Motion planner . 26
9.3 MPC controller . 27

References 28

TSRT10 Automatic control - Project course
Technical Documentation

ADAPT
alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

D O C U M E N T H I S TO RY

Version Date Changes made Sign Reviewer
0.1 2022-12-07 First Draft Project Group Project Group

TSRT10 Automatic control - Project course
Technical Documentation

ADAPT
alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

1 I N T R O D U C T I O N

This document states the technical documentation for the project "Autonomous truck with trailer" in the automatic
control CDIO project course TSRT10 at Linköpings Universitet during the fall of 2022. This year the focus was on
handling dynamic obstacles that were present in the test environment. This resulted in a new predictor, a new planner
and a new controller. The predictor consists of an IMM-filter which handles multiple motion models. The planner is
a POMDP planner able to adjust the movement according to predicted dynamic obstacle movement. The controller is
an MPC controller able to steer according to the plan received from the planner.

1.1 Background

The autonomous vehicle field is growing fast and the technology is rapidly improving, hence Linköping University
created this project to act as a base for future research. Maneuvering a truck with a trailer is a complex task for a truck
driver. Add dynamic obstacles and the task has to be performed with great care. An autonomous system could be of
great use for the truck driver to handle such situations.

1.2 Project goals

The purpose of this project is to investigate and implement algorithms for autonomous maneuvering of a truck in a
complex dynamic environment. The main focus of this year can be summarized as:

• Investigation and implementation of planning algorithms that can handle dynamic obstacles with uncertainty

• Investigation of models used for prediction of pedestrians and other dynamic obstacles

• Development of the systems architecture to implement the new functionality and to enable easier development
for future groups

• Development of the truck’s visualization system to illustrate its surroundings and current path

The long-term aim of the project is to develop a robust system that can be used for research and education at the
Department of Electrical Engineering.

1.3 Definition of terms

The terms found in the document are described below.

• Git - Software used for version control.

• MPC - Model Predictive Control, a method for process control.

• QualiSys - Motion capture and 3D positioning tracking system.

• ROS - Robot Operating System, a set of software libraries and tools used for robot applications.

• RPi - Raspberry Pi, a single board computer.

• Visionen - An arena for research and education at Linköping University.

TSRT10 Automatic control - Project course
Technical Documentation

1
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

• EV3 - Unit used to control and power the actuators and sensors on the truck.

• RViz - A visualization tool used in ROS.

• POMDP - Partially Observable Markov Decision Processes. A mathematical framework for decision making
with uncertainty. The agent can not observe the full underlying state, hence it is partially observable

• IMM filter - Interactive Motion Model filter is a filter designed to track several objects that are highly maneu-
verable.

2 S Y S T E M OV E RV I E W

The system consists of a LEGO truck with a trailer. It is mounted with a LEGO EV3 system as well as an RPi as a
computing unit. The EV3 handles steering commands and sensor readings, while the RPi runs the underlying system.
The LEGO truck is shown in Figure 1.

Figure 1: The truck and trailer used in the project

Previous year’s groups has developed a visualization system which utilizes the existing positioning and projection
system in place at Visionen (QualiSys). This unit visualizes the truck’s planned path and obstacles in real time. This
has not been used in this project due to lack of time. Instead, a simulation environment has been used for testing and
development. The simulation enables faster development of the subsystems. The simulation can be visualized in ROS
own simulation environment RViz.

TSRT10 Automatic control - Project course
Technical Documentation

2
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

2.1 Problem formulation

The truck and trailer should be able to drive autonomously between two states in an environment with both static and
dynamic obstacles, without crashing or causing any dangerous situations. This year a new IMM-filter was developed
to better predict and track the motion of a dynamic obstacle. Also a new motion planner was developed to handle the
uncertainty when predicting motion for pedestrians and ground vehicles. Lastly a new MPC-controller was developed
to fix performance issues with the existing one.

2.2 System description

The system consists of several different subsystems that work together. For an overview of the system, see Figure 2.
The subsystems are:

• A control system to compute a feasible path for the truck, this system can further be divided into four subsystems.

– A state observer, which receives world data and estimates the state of the truck.

– A motion planner, that should plan a feasible path from a start state to a goal state. It should handle
uncertainty and both static and dynamic obstacles.

– An MPC-controller, which computes feasible control signals so that the truck will follow the planned path.

– An IMM-filter, which purpose is to track and predict the future trajectory of dynamic obstacles. This
information can then be used for the motion planner to re-plan the route if a collision is at risk.

• A LEGO truck, that moves according to the control signals from the MPC.

• A visualization system, which displays the current path and obstacles in Visionen.

• A positioning system, which is used to transmit the position of the truck when running the system in Visionen.

• A simulation environment that utilizes RViz for visualization. Also a obstacle generator that provides the IMM-
filter with proper measurements.

The representation of the system seen in Figure 2 has been inspired by previous year’s group work [1]. Note also that
there are modifications compared to the proposed system in [2].
In the subsequent sections will the different subsystems be discussed in more detail. Also their current status in the
project is described.

2.2.1 Obstacle simulator

The obstacle simulator is a ROS node that provides the IMM-filter with measurements. The obstacle simulator has
been developed by [1] and has been extended to work with the IMM-filter in this project. The obstacle simulator works
properly with the IMM-filter.

2.2.2 IMM-filter

The IMM-filter is implemented as a ROS node which receives measurements from the obstacle simulator. Given these
measurements, the IMM-filter will utilize several Kalman filters to track the current state of the dynamic obstacle
and predict the future states. The IMM-filter is working properly and has been tested with the Obstacle simulator in
simulation. It has not been integrated so that it can receive measurements from Visionen.

TSRT10 Automatic control - Project course
Technical Documentation

3
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

2.2.3 POMDP Motion planner

The dynamic planner in the system uses Partially Observable Markov Decision Process (POMDP) to take into account
the uncertainty of dynamic obstacles. For online solving the package DESPOT is used which provides a belief tree
from which actions (slow down, maintain, accelerate) can be extracted to calculate a trajectory from the given planned
path [3].

2.2.4 State Observer

The state observer fuses measurements from QualiSys (or the simulator) and internal measurements from the EV3.
This results in an estimation for all the states in the truck. This has not been modified during this project.

2.2.5 MPC-controller

This years MPC controller was developed with acados in order to speed up the solving process of each iteration.
This is due to the singularities that occurred with the previous generation MPC controller. The MPC controller is
implemented as a ROS node which receives measurements from the motion planner and the state observer. It solves
the optimization problem and sends the steering commands to the EV3. The node is working but are not integrated
and the underlying solver has some issues, resulting in faulty steering commands.

2.2.6 EV3

The EV3 controls the motors and reads different sensor signals. It receives commands from the RPi and reads back
the measurements. The system on the EV3 has not been modified during this project.

2.2.7 Simulator

The simulator enables testing and development of the different subsystems that does not require the use of Visionen
directly. It has mainly been developed by previos year’s groups.

2.2.8 Simulation GUI

The simulation GUI enables visualization with RViz when running the system in the simulator. It also gives the user
the opportunity to input a start and goal state as well as reset the controller. This has not been modified during this
project. It was developed by [1].

2.2.9 Visualization in Visionen

The visualization system runs on a windows computer located in Visionen and displays information from the subsys-
tems. This has not been developed during this project. It was developed by [1].

2.2.10 QualiSys

QualiSys is the positioning system in Visionen. The QualiSys blocks in Figure 2 represents a ROS node that receives
measurements from QualiSys. This has not been developed during this project.

TSRT10 Automatic control - Project course
Technical Documentation

4
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

Figure 2: Overview of the system

3 K I N E M AT I C M O D E L

The truck-trailer system is presented in Figure 3, obtained from [4]. Figure 3 contains the bodies of the truck, dolly
and semitrailer. These bodies can be represented by a state vector, x =

[
x3 y3 θ3 β3 β2 v3 κ

]T . Here
x3 and y3 denote the center point of the trailer axle and θ3 the trailer’s heading angle. β3 represents the joint angle
between the trailer and the dolly and β2 is the angle between the truck and the dolly. The velocity at the rear axle of
the trailer is denoted with v3 and the curvature of the trajectory is denoted with κ.

The different lengths, L1, L2 and L3 seen in Figure 3, represent the LEGO truck’s wheelbase, distance between dolly
and LEGO truck, distance between dolly and trailer. M1 represents the the hitching offset, meaning the distance from
the LEGO truck’s drive axle to the hitch. The control signal u for the truck is the acceleration of the truck, v̇ and the
derivative of the curvature κ̇. The complete kinematic model is given by (1) - (5).

ẋ3 = v3cosβ3(cosβ2 + M1sinβ2κ)cosθ3 (1)

ẏ3 = v3cosβ3(cosβ2 + M1sinβ2κ)sinθ3 (2)

θ̇3 = v3
sinβ3

L3
(cosβ2 + M1sinβ2κ) (3)

β̇3 = v3(κ −
sinβ2

L2
+ M1cosβ2

κ

L2
) (4)

β̇2 = v3(
1
L2

(sinβ2 −M1κcosβ2)−
sinβ3

L3
(cosβ2 + M1sinβ2κ)) (5)

TSRT10 Automatic control - Project course
Technical Documentation

5
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

α

M1

X

Y

β

θ

2

L 3
β

3

3

(,)x3
y3

L2

L

1
v

Dolly

θ
1

3V

Semitrailer

Tractor

Figure 3: Overview of the kinematic model used for the truck with both a dolly and a trailer.

TSRT10 Automatic control - Project course
Technical Documentation

6
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

An overview of the parameters for the kinematic model is presented in Tables 1 - 2.

Table 1: Lengths of parts constituting the truck- trailer system

Name Description Value Unit

L1 LEGO truck length 0.19 [m]
L2 Dolly length 0.135 [m]
L3 Trailer length 0.3 [m]
M1 Hitch offset length 0.05 [m]

Table 2: States of the truck- trailer system.

Name Description Value Unit

x3 Trailer rear axle x-position - [m]
y3 Trailer rear axle y-position - [m]
θ3 Trailer heading angle - [rad]
β2 Joint angle between dolly and LEGO truck - [rad]
β3 Angle between dolly and trailer - [rad]
v3 Rear axel velocity of the trailer - [m/s]
κ Curvature - [rad]

TSRT10 Automatic control - Project course
Technical Documentation

7
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

4 I M M - F I LT E R A N D M OT I O N M O D E L S

The main goal of the IMM-filter [5], is to track the current position of dynamic obstacles, such as pedestrians and
ground vehicles. It should also predict the future states (positions) of these dynamic obstacles using some type of
motion model to describe the motion of the object. This will result in a predicted trajectory that can be fed to the
motion planner for re-planning purposes. An IMM-filter has been developed to achieve this, which utilizes a modified
version of the current obstacle generator to generate measurements of the dynamic obstacle.

4.1 Dynamic Obstacles

Two types of dynamic obstacles has been implemented, namely pedestrians and ground vehicles. Their corresponding
motion models can be found in Section 4.2. A pedestrian is defined by a state vector P as

P =
[
x y v h ω

]
where x and y are the coordinates of the pedestrian, v is the velocity, h is the heading and ω is the angular velocity. In
a similar fashion, the ground vehicle is defined by a state vector V given as

V =
[
x y v a h ω

]
where x and y are the coordinates of the ground vehicle, v is the velocity, a is the acceleration, h is the heading and
ω is the angular velocity. The reason for adding acceleration as an extra state is to better capture the dynamics of a
small ground vehicle (for example a RC-car) since they usually accelerate quite fast. Also, the obstacle generator has
supplied the IMM-filter with measurements, given as[

x y h i
]

where x and y form the coordinate for the current dynamic obstacle, h is the heading and i is an indicator that is zero
if it is a pedestrian and one if it is a ground vehicle. Naturally, the measurement model for both types of dynamic
obstacles is given as

yk = h(xk) + ek =


y1,k = xk + e1,k

y2,k = yk + e2,k

y3,k = hk + e3,k.

(6)

4.2 Motion models

This section presents the different motion models that have been used to capture the motion dynamics of the dynamic
obstacles. These have been implemented in the IMM-filter for tracking and predicting a future trajectory.

4.2.1 Pedestrian

The pedestrian motion models describes how to update the state vector P. The pedestrian has three motion models,
IDLE, CV (Constant Velocity [6]) and CTPV (Coordinated Turn Polar Velocity [7]). The aim of these motion models
is to describe the movement of a generic pedestrian.

TSRT10 Automatic control - Project course
Technical Documentation

8
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

fIDLE(xk)



xk+1 = xk

yk+1 = yk

vk+1 = 0
hk+1 = hk

ωk+1 = 0

fCV(xk)



xk+1 = xk + Tsvk cos(hk)

yk+1 = yk + Tsvk sin(hk)

vk+1 = vk

hk+1 = hk

ωk+1 = 0

fCTPV(xk)



xk+1 = xk +
2vk
ωk

sin
(

ωkTs
2

)
cos

(
hk +

ωkTs
2

)
yk+1 = yk +

2vk
ωk

sin
(

ωkTs
2

)
sin

(
hk +

ωkTs
2

)
vk+1 = vk

hk+1 = hk + ωTs

ωk+1 = ωk
(7)

4.2.2 Ground Vehicle

The ground vehicle motion models describes how to update the state vector V. The ground vehicle has three motion
models, IDLE, CTPV (Coordinated Turn Polar Velocity [7]) and CTPVA (Coordinated Turn Polar Velocity and Accel-
eration) which can be seen as a modified version of CTPV where constant acceleration is assumed. Here the CV has
been removed since we want the ground vehicle to be non-holonomic, meaning it cannot travel in any direction at any
time. The aim of these motion models is to describe the movement of a generic ground vehicle.

fIDLE(xk)



xk+1 = xk

yk+1 = yk

vk+1 = 0
ak+1 = 0
hk+1 = hk

ωk+1 = 0

fCTPV(xk)



xk+1 = xk +
2vk
ωk

sin
(

ωkTs
2

)
cos

(
hk +

ωkTs
2

)
yk+1 = yk +

2vk
ωk

sin
(

ωkTs
2

)
sin

(
hk +

ωkTs
2

)
vk+1 = vk

ak+1 = 0
hk+1 = hk + ωTs

ωk+1 = ωk

(8)

fCTPVA(xk)



xk+1 = xk +
2vk
ωk

sin
(

ωkTs
2

)
cos

(
hk +

ωkTs
2

)
yk+1 = yk +

2vk
ωk

sin
(

ωkTs
2

)
sin

(
hk +

ωkTs
2

)
vk+1 = vk + akTs

ak+1 = ak

hk+1 = hk + ωTs

ωk+1 = ωk

(9)

4.3 IMM-filter

The IMM-filter consists of several Kalman filter that operate in parallel, see Figure 4. The idea is to use probability
theory to determine which filter is the most accurate given some measurement. This is referred to as the mode proba-
bility, meaning that each filter has a certain probability of being the correct one at a certain time step. The algorithm
is divided into four steps.

1. Input mixing - Given the previous estimate, weight each state and covariance according to the previous mode
probability and the transition probability matrix. This gives us a mixed initial state for each filter.

2. Mode matched prediction update - This corresponds to the time update in a Kalman filter. The only difference
is that we call each Kalman filter to make a new estimate given the mixed state.

TSRT10 Automatic control - Project course
Technical Documentation

9
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

3. Mode matched measurement update - This corresponds to the measurement update in a Kalman filter. The only
difference is that we call each Kalman filter to make a new estimate given the previous estimated state and a
measurement. Also we update each filters likelihood given the measurement. This likelihood is then used to
update the mode probabilities.

4. Output mixing - Final step where we weight each estimate given the mode probabilities and output the most
likely one.

Figure 4: Overview of the IMM algorithm and its components. In this example is the IMM-filter implementing three filters but
this can be chosen arbitrary.

4.3.1 Tracking and initializing the filter

The first task for the IMM-filter is to track the dynamic obstacle. This is done in a similar manner as if one were to
use a standard Kalman filter. The advantage is here, as previously stated, is that several filters are used with different
motion models. This will give a better estimate of the motion and therefore tracking than just utilizing one filter. The
tracking starts after the filter have received two measurements, since that is needed to properly initialise the filter.
Since x, y and h are measured directly, they can be set directly. The initial velocity is set as

v0 =

√
(x1 − x0)2 + (y1 − y0)2

Ts
(10)

TSRT10 Automatic control - Project course
Technical Documentation

10
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

where index 0 and 1 correspond to the first and second received measurement and Ts the sampling time. Similarly is
the initial angular velocity set as

ω0 =
h1 − h0

Ts
(11)

where index 0 and 1 correspond to the first and second received measurement and Ts the sampling time. The initial
covariance was set to the identity matrix and the initial acceleration was considered to be zero.

4.3.2 Prediction of trajectory

The second task of the IMM-filter is to give a future trajectory of where the dynamic obstacle will be in some time.
Given a measurement, the IMM-filter first updates the tracking of the dynamic obstacles and then predicts a trajectory
30 states ahead which corresponds to 6 seconds ahead with Ts = 0.2 s. This prediction step consits of calling the
most likely time update 30 times in a row to get a proper trajectory, see Figure 5. The algorithm used can be found in
Algorithm 1.

Figure 5: Tracking and prediction of trajectory for the ground vehicle. The white box is the ground vehicle and the green arrow is
the estimate of the tracking. The green line is the ground truth and the blue line is the predicted trajectory.

4.4 Output to the Motion Planner

The output from the IMM-filter is represented by seven lists. The first two lists contains the x, y-coordinates in the
coming 30 states from the prediction step, see 4.3.2. The following four lists represents each element in the covariance
matrix for the x, y-coordinates. The final list corresponds to when in time each of these states will occur. See equation
12 for clarification.

TSRT10 Automatic control - Project course
Technical Documentation

11
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

Algorithm 1 Predict Trajectory

while Predictor is running do
Trajectory← Emptylist
x, P← IMM(meas)
mode← MostLikelyMode
for all future sample points within horizon do

x, P← TimeUpdate(x, P, mode)
Trajectory.insert(x, P)

end for
publish trajectory on topic
sleep

end while



x: [x1, x2, . . . , xN]
y: [y1, y2, . . . , yN]

Pxx : [Pxx1, Pxx2, . . . , PxxN]
Pxy : [Pxy1, Pxy2, . . . , PxyN]
Pyx : [Pyx1, Pyx2, . . . , PyxN]
Pyy : [Pyy1, Pyy2, . . . , PyyN]

time: [t1, t2, . . . , tN]


(12)

TSRT10 Automatic control - Project course
Technical Documentation

12
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

5 M OT I O N P L A N N E R

The motion planner consists of two ROS nodes, lego_truck_planner which is the static planner and
lego_truck_dynamic_planner which is the dynamic planner. The static motion planner has not been modified this
year. See previous years’ documentation [1] for information on how it works. The dynamic planner has been imple-
mented from scratch this year.

5.1 Dynamic motion planner

The main task for the dynamic motion planner is to adjust the velocity profile so that the truck won’t collide with
obstacles crossing the path. The dynamic motion planner utilizes a Partially Observable Markov Decision Process
(POMDP) to plan a velocity profile along the path, planned by the static planner. The planner can thus only take
longitudinal action to avoid a dynamic obstacle, laterally it will only follow the pre-planned path. The planner utilizes
the online POMDP solver DESPOT to solve the problem. This solver has previously been used by a research team at
Singapore National University for a similar application [8].

5.1.1 Input

The dynamic planner receives the following inputs:

• The planned path as a message of the type Reference.msg on the ROS topic reference

• Predicted path of the dynamic obstacle as a message of the type PredictionIMM.msg on the ROS topic
/predictor/predicted_trajectory_imm

• The state of the truck as a message of the type State.msg on the ROS topic estimated_state

5.1.2 Output

The dynamic planner outputs a trajectory as a message of the type PomdpTrajectory.msg on the topic /pomdp/velocity.

5.1.3 POMDP Model definition

In each step, the POMDP solver DESPOT outputs one out of three actions (accelerate, maintain speed or slow down).
The consequence of each action is simulated and a reward is recieved depending on the consequence. The rewards are
used with the online solving in DESPOT with the goal to maximize the reward. The rewards are tune-able and give
the possibility to change the behaviour of the dynamic planner, e.g. more passive/agressive planning with regards to
speed and risktaking. Rewards are given accordingly:

• Reaching the goal: 10

• Being closer than 1m to a dynamic obstacle: −1000

• High speed: −3 + 3 ∗ |speed|, speed = [−1, 1]

Observation of dynamic obstacles are done using the input from the IMM-filter. The predicted path of a dynamic
obstacle includes position and a timestamp starting from zero (present time) and increases with the time step used
in the IMM-filter. Positions of the dynamic obstacles are compared to positions of the Truck simulated in the online

TSRT10 Automatic control - Project course
Technical Documentation

13
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

solver. An obstacle observation is considered if they are within a radius of 1m. The uncertainty of correctness in
dynamic obstacle predictions are then used in the observation probability function in the POMDP model. Using
the covariance elements of the obstacle state the probability of observation is calculated linearly starting from the
covariance boundary and increasing towards 0.99 as the distance between the truck and the given position of the
obstacle shrinks to 0.

5.1.4 Belief tree

During run-time the DESPOT online solver runs simulations using the current state and the action space (slow down,
maintain, accelerate). After each action an observation is made and a reward is received. This will result in a tree like
structure called belief tree. From this belief tree the solver chooses the best action to take in the current state [9]. The
belief tree can be multiple levels deep and to create a trajectory all actions in the best belief scenario is extracted.

5.1.5 Trajectory

The dynamic motion planner combines the path planned by the static motion planner with the acceleration profile by
first converting the acceleration profile into a velocity profile. When the planner knows which velocities the truck
has at different discrete points in time, it can compute the length driven at each time stamp. After this, it interpolates
positions on the original path for each time stamp. At this point, a trajectory can be constructed by combining the
velocities with corresponding states at each time stamp.

Figure 6: Illustration of turning the path into a trajectory

5.1.6 Implementation in C++

The dynamic motion planner has been implemented in C++ as DESPOT is written in C++ and ROS is compatible with
this language. Three .cpp files has been written, which can be found in the src folder in the node lego_truck_dynamic_planner.

TSRT10 Automatic control - Project course
Technical Documentation

14
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

dynamic_planner.cpp defines the problem in DESPOT, dynamic_planner_world.cpp is used to communicate with
ROS and main.cpp is the main file for both the ROS node and DESPOT. The file planner.cpp in the DESPOT source
has also been modified to make the planner run indefinitely. Please refer to the DESPOT GitHub for instructions on
how to define a POMDP model in DESPOT [3].

TSRT10 Automatic control - Project course
Technical Documentation

15
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

6 M P C C O N T R O L L E R

This section will present the MPC controller used in this project.

6.1 Problem description

In this project, the MPC controller was developed using the interface provided by acados. For a more detailed view of
the interface, visit [10].

From the motion planner the controller will receive seven reference states [x3, y3, θ3, β2, β3, v3, α] or more specific
a trajectory. Due to the different working frequencies between the motion planner and the MPC, the trajectory sent
by the motion planner is interpolated with the current state provided by the state observer. The controller’s objective
is to follow the trajectory and decelerate or accelerate in order to avoid the dynamic obstacles. This is done via the
velocity state sent over by the motion planner which contains information regarding when to decelerate or accelerate.
The calculated steering commands necessary to follow the trajectory are sent to the EV3 that handles the motors of
the truck.

6.2 MPC problem formulation

In this section the problem formulation for the MPC is presented. In 13, x are the states, u is the control input, f is the
dynamics of the system, T is the time horizon, L is the Lagrange integrand and Γ is the Mayer term.

minimize
∫ T

0
L(x(t), u(t))dt + Γ(x(T))

subject to x(0) = x0

ẋ(t) = f (t, x(t), u(t))

x(t) ∈ X

u(t) ∈ U

x(T) ∈ X(T)

t ∈ [0, T]

(13)

The trajectory following MPC controller is after discretization formulated as:

minimize
N−1

∑
k=0

(
x̃T

k Qx̃k + ũT
k Rũk

)
+ x̃T

N Px̃N

subject to x̃(0) = x(0)− xr(0)

x̃k+1 = Fk x̃k + Gkũk

x̃(k) + xr(k) ∈ X∀k ∈ {0...N − 1}
ũ(k) + ur(k) ∈ ∀k ∈ {0...N − 1}
x̃(N) + xr(N) ∈ X(N)

(14)

TSRT10 Automatic control - Project course
Technical Documentation

16
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

where the predicition horizon is given by N. The terminal cost is given by x̃T
N Px̃N and the running cost by x̃T

k Qx̃k +
ũT

k Rũk [11].

6.3 Trajectory tracking with MPC

The idea of the trajectory tracking is to minimize the tracking error x̄(t) = x(t) − xr(t) where x(t) is the actual
position of the truck and xr(t) is the reference provided by the motion planner. This idea can be seen in Figure 7 even
though the states do not match the actual states used.

Figure 7: The trailers relation to the trajectory.

6.4 Constraints

In this section the constraints for the system dynamics are presented.

6.4.1 Steering and curvature

The constraints of the steering angle of the truck will be limited to:

−αmax ≤ α ≤ αmax ⇐⇒ |α| ≤ αmax

The same constraints value as previous year [12] will be used, with αmax = 0.65 radians.
Since the implementation does not use the steering angle as a constraint, but rather the curvature, the following
calculation is made.

κmin,max =
tan(|α|)

L1
=

tan(0.65)
0.19

≈ 4⇒ |κ| ≤ 4

TSRT10 Automatic control - Project course
Technical Documentation

17
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

6.4.2 Jack-knifing

In order to prevent jack-knifing during running, constraints on the parameters β2 and β3 were added. The dolly angles
need to have a slack variable ϵβ which allows the angles to deviate slightly from the set values, this is to prevent the
truck getting stuck during operation. This results in the following constraints:

|β2| < β2,max + ϵβ

|β3| < β3,max + ϵβ

The values used for the maximum and minimum angles in these constraints are:

|β2| = 0.65

|β3| = 0.75

6.4.3 Acceleration

Without information about the performance limitations of the Lego Truck, the maximum and minimum acceleration
were set to |a| = 1. These constraints are restricted by the physical abilities of the Lego truck itself and therefore an
ad hoc-implementation of the constraint were used. The constraints were formulated as:

−amax ≤ a ≤ amax

6.4.4 Change rate of steering angle

As for the acceleration, the maximum change rate of the steering angle is unknown. To solve this, an ad hoc-solution
was found to be |κ̇| = 10 rad/s2. The constraints were formulated according to:

−κ̇max ≤ κ̇ ≤ κ̇max

TSRT10 Automatic control - Project course
Technical Documentation

18
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

6.5 Parameters

In this section the parameters used in this project are presented.

6.5.1 Tuning parameters

The tuning parameters used in the implementation are shown in Table 3.

Table 3: Tuning Parameters

Name Value Unit

N 100 [-]
T 1 [s]
zl 1000 [-]
zu 1000 [-]

Where N is the prediction horizon, T is the time horizon and z is the slack variable for the states and the control inputs.

6.5.2 Weights

The weights for the states can be seen in 15.

Q =



1000 0 0 0 0 0 0
0 1000 0 0 0 0 0
0 0 1000 0 0 0 0
0 0 0 0.001 0 0 0
0 0 0 0 0.001 0 0
0 0 0 0 0 1000 0
0 0 0 0 0 0 0.001


(15)

The weights for the end states can be seen in 16.

Qe =



10000 0 0 0 0 0 0
0 10000 0 0 0 0 0
0 0 10000 0 0 0 0
0 0 0 0.001 0 0 0
0 0 0 0 0.001 0 0
0 0 0 0 0 1000 0
0 0 0 0 0 0 0.001


(16)

.
The weights for the control signals can be seen in 17.

R =

[
1 0
0 1

]
(17)

TSRT10 Automatic control - Project course
Technical Documentation

19
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

6.5.3 Limits

The limits for the different states can be seen in Table 4

Table 4: Limits

Name Value Unit

|α| 0.65 [rad/s]
|κ| 4 [-]
|β2| 0.65 [rad]
|β3| 0.75 [rad]
| Throttle rate change | 10 [m/s2]
| Curvature rate change | 10 [rad/s2]

6.6 Implementation

This years MPC is built using the acados framework. One defines the states, dynamics and constraints in a MATLAB
model using CasADi. After that, everything is defined using the pre-existing functions in acados. This includes e.g if
it should be a linear or non-linear cost matrix, defining constraints and setting the initial states.

Once the MATLAB part of the implementation is complete acados allows for generation of C-code which will be used
in the underlying solver in the MPC node. Much of the code can be generated, however the unique MPC problem
needs to be defined once again but this time it needs to be defined in C++ for the solver to work with the MPC node.
The MPC node allows for communication with the rest of the system.

TSRT10 Automatic control - Project course
Technical Documentation

20
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

7 S O F T WA R E I M P L E M E N TAT I O N

This project uses ROS as a big part of the implementation, since it allows all the subsystems to communicate with
each other. The implemented code this year was written in Python, C++ and MATLAB.

7.1 ROS

Each of the subsystems in the project are implemented as a package in ROS. Each of these will host at least one node
that will be running the respective subsystem. The nodes will communicate using topics in the ROS framework. This
will make the input-output structure of the nodes manageable. The subsystem that needs input from another subsystem
can then subscribe to the topic which the subsystem publishes.

Besides this, ROS also provides other tools used in this project. The simulation environment visualization is using
RViz that visualizes the data from different topics.

7.2 Packages

The main packages that has been developed or modified during this year’s project are presented below.

• lego_truck_obstacle_simulator

– Developed in Python

– Modified version from last year to work with the IMM-filter.

• lego_truck_imm

– Developed in Python

– Created during this project. For more info, see the repository.

• lego_truck_dynamic_planner

– Developed in C++

– Created during this project. Utilizes the POMDP motion planner DESPOT to create an action tree. For
more info, see the repository.

• lego_truck_mpc_acados

– Developed first in MATLAB, then transcribed to C++. Utilizes the optimization solver acados to solve the
optimization problem. For more information, see the repository.

– Created during this project.

TSRT10 Automatic control - Project course
Technical Documentation

21
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

8 R E S U LT S

8.1 IMM-filter

After implementation of the IMM-filter it has been evaluated using RViz, see Figure 8 and 9. The results in RViz show
that the IMM-filter works as expected. The IMM-filter is able to track both pedestrian and ground vehicles and it can
utilize all different motion models to do so. In Figure 8a can it be seen that the IMM-filter tracks the position of the
pedestrian and that the predicted path is consistent with the ground truth. This also applies for Figure 8b. Here the
blue line has not yet converged to the green line since the algorithm requires some measurements to better predict
future states. The IDLE mode was omitted here but work similairly as in Figure 9c.

The motion models for the ground vehicles works appropriately as can be seen in Figure 9a, 9b and 9c. The rea-
son for not having a Constant Velocity model here is to better model the non-holonomic constraints a ground vehicle
has. The ground vehicle can still move in a straight line, given that the angular velocity is zero. The CTPVA model
assumes constant acceleration which explains the overshoot in Figure 9b.

The IMM-filter has also successfully been integrated in the ROS systems and can utilize the measurements from
the obstacle generator. It has not been tested in Visionen and it has not been integrated with QualiSys to receive raw
measurements from dynamic obstacles.

(a) Tracking of pedestrian using the CV model. The white
sphere is the position of the pedestrian and the green
arrow is the estimate. The green line is the ground truth,
meaning where the pedestrian will go in the future and
the blue line is the predicted trajectory.

(b) Tracking of pedestrian using the CTPV model. The
white sphere is the position of the pedestrian and the
blue arrow is the estimate. The green line is the ground
truth, meaning where the pedestrian will go in the fu-
ture and the blue line is the predicted trajectory.

Figure 8: Pedestrian tracking and prediction of trajectory

TSRT10 Automatic control - Project course
Technical Documentation

22
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

(a) Tracking of ground vehicle using the
CTPV model. The white cube is the
position of the ground vehicle and the
green arrow is the estimate. The green
line is the ground truth, meaning where
the ground vehicle will go in the future
and the blue line is the predicted trajec-
tory.

(b) Tracking of ground vehicle using the CT-
PVA model. The white cube is the posi-
tion of the ground vehicle and the blue
arrow is the estimate. The green line
is the ground truth, meaning where the
ground vehicle will go in the future and
the blue line is the predicted trajectory.

(c) Tracking of ground vehicle using the
IDLE model. The white cube is the po-
sition of the ground vehicle and the red
arrow is the estimate. Here no lines are
produced since the obstacle is standing
still.

Figure 9: Ground vehicle tracking and prediction of trajectory

8.2 Motion Planner

Results of the motion planner comes in two parts, the originally planned dynamic motion planner and a simplified
dynamic motion planner.

8.2.1 Simplified dynamic motion planner

After implementation of the dynamic motion planner it has been simulated and visualized using MATLAB. To vi-
sualize the result of the dynamic motion planner a straight line mission was done. Simulating a mission with a
straight path from (x, y)start = (0, 0) to (x, y)goal = (10, 0) with an obstacle moving as follows: (x, y)obs,start =
(6, 0), time < 25s the moving towards (x, y)obs = (2.875, 0), 25 <= time < 50s and lastly moving towards
(x, y)obsgoal = (11.125, 0), 50s < time. The mission results are visualized in Figure 10. In the figure the result
shows the truck reference trajectory simulated with a time step of 1 second. As currently implemented the truck is
keeping the safety distance to the dynamic obstacle as it moves towards the truck and the truck reverses to avoid a
crash (getting to close results in a large negative reward). As the obstacle then moves away and passes the goal the
truck keeps progressing until the goal is reached. The small waves in the truck curve is a result of the time step for the
truck state transition function.

TSRT10 Automatic control - Project course
Technical Documentation

23
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

Figure 10: Truck reference output for a straight line mission with a dynamic obstacle.

8.2.2 Dynamic motion planner

8.3 MPC Controller

After implementation of the MPC controller in MATLAB, it was evaluated using an example track existing in the
acados repository. The track was used to test the MPC controller’s ability to send the right steering commands to make
the LEGO truck follow a certain reference trajectory in simulation. In this case the reference consisted of a reference
curvature displayed by a dashed line in the center of the example track. This example track can be seen to the left in
Figure 11 and 12. These tests were made in order to make sure that the truck dynamics were correctly implemented in
the model. Two different missions were executed around the track, one for forward driving and one for reverse driving.
These missions are described in Section 8.3.1 and 8.3.2.

8.3.1 Forward driving

In the forward driving test the LEGO truck’s start position was set a bit off relative the race track. The purpose of this
initialization was to see whether the truck would approach the reference curvature. The forward driving test is shown
in Figure 11a which shows that the truck follows the reference with only small deviations. In Figure 11b the upper
plot shows the control signals during the run and the lower figure shows the truck’s states except for the position in x
and y-direction.

TSRT10 Automatic control - Project course
Technical Documentation

24
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

(a) Truck following track driving forward. (b) Control signals and the states variation during the run.

Figure 11: Forward driving test.

8.3.2 Reverse driving

The result of the truck reversing around the pre-defined track can be seen in Figure 12. In the left-most picture one can
see that the starting position was set to x3 = 1 and y3 = -1, this was as with the forwards driving test used to see the
behaviour of the truck when it was started with an offset. The goal state was set to zero in both x and y direction. It
follows the reference with a satisfying result, however the result could be better if one were to tune the weights of the
controller a bit better. The right-most picture showcase how the acceleration and curvature change varied thorugh out
the run. It keeps within the constraints formulated in MATLAB. It also shows how the different states varied though
out the run.

(a) Truck following track reversing. (b) Control signals and the states variation during the run.

Figure 12: Revers driving test.

TSRT10 Automatic control - Project course
Technical Documentation

25
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

9 F U T U R E I M P R OV E M E N T S

In this section, future improvements are presented.

9.1 IMM-filter

The IMM-filter is working properly in Python with the provided motion models. It has been tested with the obstacle
simulator and it works as expected. There are however some fundamental drawbacks with the IMM-filter, that can be
improved upon.

• The motion models provided can be improved. The motion models provided can be improved upon to better
capture the true dynamics of a pedestrian and a ground vehicle. The motion models that are used right now can
only capture a limited range of motions. Either more motion models can be used (this might however have an
impact on the performance) or the motion models themselves can be improved.

• The IMM-filter have fundamental problems. The IMM-filter is a good solution if the dynamic obstacle is moving
slow and steady and without rapid change in direction. For example it works well on aircrafts or big cruise ships.
A pedestrian however is usually moving in a more spontaneous manner, and here the IMM-filter might not be
the best solution. Also the IMM-filter does not consider static obstacles meaning that it cannot predict that
pedestrians will walk around such obstacles and not into them. An alternative approach might be suitable here.
There exists a lot of related work, for example [13] or [14] that can be used as inspiration to alternative solutions.

• As the filter is designed now it can only track one target. A natural extension is to make it track and predict the
trajectory of several targets at once. If it is clear from which dynamic obstacle we receive the measurements it
is just a matter of creating another IMM-filter, which is simple with the current implementation (basically just
create a new instance of the IMM-filter class). If it is unclear however from which dynamic obstacle we receive
measurements we must consider this. This requires a Joint Probabilistic Data Association Filter (JPDA) [15].
This filter aims to associate data with a certain object.

9.2 POMDP Motion planner

The dynamic motion planner can be improved in multiple ways. Here are some examples.

• Initially, it was intended to extract the full action sequence. It was not possible to implement this successfully in
time and thus only the next action is extracted from the tree. The velocity resulting from this action is published
on the topic /pomdp/velocity. The controller lego_truck_mpc_controller_trajectory was modified to use this
velocity and the planned path as references. However, there exists code in dynamic_planner_world.cpp which
can create a proper trajectory given that the full action sequence can be extracted.

• The rewards which are specified in dynamic_planner.cpp can be updated and refined.

• If the IMM is updated to support multiple obstacles the array obstacle_state can be a vector of arrays with one
array for each obstacle. This was seen as an option in the beginning of the project but was not implemented due
to lack of time.

• The motion planner is currently not tested for reversing. This should be relatively easy to implement as infor-
mation about direction is received from the static motion planner.

TSRT10 Automatic control - Project course
Technical Documentation

26
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

9.3 MPC controller

The MPC controller is currently not working in C++. Both the node and the underlying solver can be built using
catkin_make. The node is also working with ROS, however the underlying solver contains some errors resulting in the
steering commands for the EV3 are not calculated in a satisfying way.

The future work for the MPC controller is hence to make the underlying solver work and test the subscribers and
publishers. Making sure that the controller is doing what it is supposed to do.

TSRT10 Automatic control - Project course
Technical Documentation

27
ADAPT

alfsu259@liu.se

alfsu259@liu.se

Autonomous Truck with Trailer December 15, 2022

R E F E R E N C E S

[1] J. Rosengren, E. Sellén, D. Larsson, D. Similä, G. Ingemarsson, J. Sjöblom, and O. Bergström. (2021) Technical
documentation, autonomous truck with a trailer. [Online]. Available: http://www.isy.liu.se/edu/projekt/tsrt10/
2021/rev_truck/

[2] M. Axelsson, J. Barreng, I. Bokne, C. Elf, T. Johansson, A. Sundstedt, and E. Wiman. (2022) Design
specification, autonomous truck with a trailer. [Online]. Available: http://www.isy.liu.se/edu/projekt/tsrt10/2022/
rev_truck/

[3] AdaCompNUS. (2015) Despot. [Online]. Available: https://github.com/AdaCompNUS/despot

[4] O. Ljungqvist, D. Axehill, H. Pettersson, and J. Löfberg. (2020) Estimation-aware model
predictive path-following control for a general 2-trailer with a car-like tractor. [On-
line]. Available: http://www.researchgate.net/publication/339470933_Estimation-aware_model_predictive_
path-following_control_for_a_general_2-trailer_with_a_car-like_tractor

[5] TargetTracking. (2021) Derivation of the imm filter. [Online]. Available: http://www.control.isy.liu.se/student/
graduate/TargetTracking/IMMderivation.pdf

[6] F. Gustafsson, Statistical Sensor Fusion, 3rd ed. Studentlitteratur AB, Lund, 2018.

[7] M. Roth, G. Hendeby, and F. Gustafsson, “Ekf/ukf maneuvering target tracking using coordinated turn models
with polar/cartesian velocity,” in 17th International Conference on Information Fusion (FUSION), 2014, pp. 1–8.

[8] H. Bai, S. Cai, N. Ye, D. Hsu, and W. S. Lee, “Intention-aware online pomdp planning for autonomous driving
in a crowd,” in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 454–460.

[9] L. Pack Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in partially observable stochastic
domains,” in Artificial Intelligence, 1995, pp. 99–134.

[10] acados. (2022) acados. [Online]. Available: https://docs.acados.org/

[11] D. Larsson, D. Similä, E. Sellén, G. Ingemarson, J. Sjöblom, O. Bergström, and J. Rosengren. (2021) Design
specification, autonomous truck with a trailer. [Online]. Available: http://www.isy.liu.se/edu/projekt/tsrt10/2021/
rev_truck/

[12] P. Antonsson, E. Bourelius, G. Erbing, J. Gustafsson, A. Holgersson, O. Ismail, F. Jussila, P. Liljeström, K. Rajala,
D. Salomonsson, and V. Uvesten. (2020) Design specification autonomous truck with a trailer. [Online].
Available: http://www.isy.liu.se/edu/projekt/tsrt10/2020/rev_truck/images/documents/design_specification.pdf

[13] Y. Luo, P. Cai, A. Bera, D. Hsu, W. S. Lee, and D. Manocha, “Porca: Modeling and planning for autonomous
driving among many pedestrians,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3418–3425, 2018.

[14] Y. Luo, P. Cai, Y. Lee, and D. Hsu, “Gamma: A general agent motion model for autonomous driving,” IEEE
Robotics and Automation Letters, vol. 7, no. 2, pp. 3499–3506, 2022.

[15] Wikipedia. (2022) Joint probabilistic data association filter. [Online]. Available: https://en.wikipedia.org/wiki/
Joint_Probabilistic_Data_Association_Filter

TSRT10 Automatic control - Project course
Technical Documentation

28
ADAPT

alfsu259@liu.se

http://www.isy.liu.se/edu/projekt/tsrt10/2021/rev_truck/
http://www.isy.liu.se/edu/projekt/tsrt10/2021/rev_truck/
http://www.isy.liu.se/edu/projekt/tsrt10/2022/rev_truck/
http://www.isy.liu.se/edu/projekt/tsrt10/2022/rev_truck/
https://github.com/AdaCompNUS/despot
http://www.researchgate.net/publication/339470933_Estimation-aware_model_predictive_path-following_control_for_a_general_2-trailer_with_a_car-like_tractor
http://www.researchgate.net/publication/339470933_Estimation-aware_model_predictive_path-following_control_for_a_general_2-trailer_with_a_car-like_tractor
http://www.control.isy.liu.se/student/graduate/TargetTracking/IMMderivation.pdf
http://www.control.isy.liu.se/student/graduate/TargetTracking/IMMderivation.pdf
https://docs.acados.org/
http://www.isy.liu.se/edu/projekt/tsrt10/2021/rev_truck/
http://www.isy.liu.se/edu/projekt/tsrt10/2021/rev_truck/
http://www.isy.liu.se/edu/projekt/tsrt10/2020/rev_truck/images/documents/design_specification.pdf
https://en.wikipedia.org/wiki/Joint_Probabilistic_Data_Association_Filter
https://en.wikipedia.org/wiki/Joint_Probabilistic_Data_Association_Filter
alfsu259@liu.se

	1 Introduction
	1.1 Background
	1.2 Project goals
	1.3 Definition of terms

	2 System overview
	2.1 Problem formulation
	2.2 System description

	3 Kinematic model
	4 IMM-filter and motion models
	4.1 Dynamic Obstacles
	4.2 Motion models
	4.3 IMM-filter
	4.4 Output to the Motion Planner

	5 Motion Planner
	5.1 Dynamic motion planner

	6 MPC controller
	6.1 Problem description
	6.2 MPC problem formulation
	6.3 Trajectory tracking with MPC
	6.4 Constraints
	6.5 Parameters
	6.6 Implementation

	7 Software implementation
	7.1 ROS
	7.2 Packages

	8 Results
	8.1 IMM-filter
	8.2 Motion Planner
	8.3 MPC Controller

	9 Future improvements
	9.1 IMM-filter
	9.2 POMDP Motion planner
	9.3 MPC controller

	References

