
Design Specification
Search and Rescue - Land

Version 1.0

Author: Rickard Wretlind
Date: October 17, 2022

Status

Reviewed Jakob Åslund 2022-10-17
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Search and Rescue - Land 1

1 Introduction

This document is the design specification for the Search and Rescue - Land project, in
the course TSRT10 Automatic Control - Project Course. It presents the specifications for
the design of the system.

1.1 Parties

There are principally two different parties involved in this project: Linköping University
and SAAB Dynamics. In the context of the course, the SAAB Dynamics party acts as
customers interested in a Search and Rescue-platform, and the University party acts as a
company tasked with delivering the product.

The party from Linköping university consists of: Anja Hellander acting as advisor, Jakob
Åslund acting as orderer, and the project group which consists of seven master students.
Furthermore, the party from SAAB Dynamics consists of: Torbjörn Crona fulfilling the
role of customer, and Linus Wiik, Joel Wikner and Åke Johansson acting as additional
advisors.

1.2 Purpose and goal

The main purpose of this project is to develop a Search and Rescue-system consisting of
an unmanned ground vehicle, called the Rover, and an Unmanned Aerial Vehicle (UAV)
collaborating to identify, track and supply people in distress. To accomplish this, the
system should be able to map and navigate an area with people in distress. Specifically,
the Rover should use a LIDAR-sensor to map the environment, whilst, using cameras,
collaboratively searching with the UAV for distressed people.

Thus, the goal is to deliver a system according to the aforementioned specifications. The
system should also follow design guidelines such as adhering to Google’s code standard,
developing the system in ROS2 and extending the docker integration of the current project.

1.3 Usage

As mentioned above, the intended use case of the product is deployment in a complex
environment with distressed people to save. However, the finished product will only
function in an environment as described in “Project Plan.pdf”[8].

1.4 Background Information

To search for and rescue distressed people by foot can be dangerous and time-consuming.
In order to increase the safety and and improve the chance of finding and rescuing dis-
tressed person, robots, such as rovers and UAV:s, can be used instead.

This project has been developed for many years at Linköping university and has had
different development goals through the years. Today the system consists of one UAV
and one Rover which are equipped with different sensors, cameras, and LIDAR which
makes it possible to map the environment and creating motion plans in search and rescue
missions.

The project has a sister project called “Search and Rescue – Underwater”. The coopera-
tion between the two project is slight, while there are visions to unify the project in the
distant future.
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Search and Rescue - Land 2

1.5 Definitions

Below some definitions and acronyms are explained which are recurring in this document.

• Rover - Tracked vehicle driving autonomously that maps the test area and seeks
distressed persons.

• UAV - A quadcopter flying autonomously and seeks distressed persons.

• Agent - participant in a mission, Rover and/or UAV.

• Base Station - A computer that handles the information from the Rover and UAV.

• Distressed person - In simulation, this is a virtual marker that should be found
by the Rover and UAV. When doing real tests, this will be RC-cars colored with
bright colors.

• SLAM - Simultaneous Localization and Mapping.

• LIDAR - Light Detection and Ranging.

• SIL - Software In The Loop.

• Qualisys - Sensor system in the room Visionen that uses cameras and reflective
targets to deliver position data.

• ROS2 - ”Robot Operating System”, Framework for robot software development.

• No-fly zone - A zone where the UAV is restricted from flying into.

• PDDL - Planning Domain Definition Language.

• RPi - Raspberry Pi.

• Pixhawk - The flight controller Pixhawk 4 that is mounted on the UAV.

• HW - Hardware.

• SW - Software.

• Rviz2 - A visualization manager that displays the generated map and agent posi-
tions during the mission.

• Gazebo - Simulation environment.

• RC-car - Small RC-cars controlled by the user, that are used to simulate distressed
persons.
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Search and Rescue - Land 3

2 System Overview

This section aims to give an overview of the entire system. The system utilizes SIL, which
means it can either be run on hardware or in simulation without subsystems knowing
which mode it is run on. Furthermore, the system is divided into different subsystems
and three of those subsystems, if not run in simulation mode, are hardware based. Those
subsystems include Base Station, Rover and UAV. A schematic overview of those can be
seen in Figure 1.

Figure 1: An overview of the entire system with Base Station, UAV and Rover.

The idea for the system is to use the Base Station as an intermediator for communication
between the Rover and UAV. The Base Station handles the communication via a network,
and coordinates the Rover and UAV with a task planner. Both the Rover and UAV shall
receive a task from the Base Station and be able to plan how to execute the task itself,
using predefined behaviors. Briefly explained, the Rover should be able to use SLAM in
order to map and localize itself with the use of a LIDAR, as well as track distressed people
with a camera. The UAV will however only be able to track people with a camera while
also being able to deliver supplies.

Not visualized in Figure 1 is that the system will use Qualisys implemented in the arena
Visionen. Qualisys will provide an estimated position (similar to a GPS) for the Rover
and UAV.

2.1 Subsystems

The system is divided into the following subsystems:

• Base Station

• Rover

• UAV

• Simulation Environment
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Search and Rescue - Land 4

2.2 Mission

Briefly summarized, the mission is to search an unknown area with the Rover and UAV
until all distressed persons are found. At first the Rover will map the area while searching
for distressed persons and the UAV will search for distressed persons. When the area is
mapped, the Rover and UAV will search different parts of the area simultaneously. When,
and if, a distressed person is found, the Rover will start to track the distressed person
while the UAV will collect and deliver supplies. When all distressed persons are found,
the Base Station will signal mission complete.

Mission Start

Map, Search D.P. Identify

Search D.P.

∨

Deliver Supplies

Track D.P. Mission Complete

∧

Delivered

Delivered

D.P. found

D.P. found

Moving
D.P.

!All distressed persons found

!All distressed persons found
Init UAV

Init Rover

!Delivered

!Delivered

All distressed persons found

Figure 2: Illustration of the sequence of events for a mission. Red arrows indicate actions
dependent on the Rover and blue arrows indicate actions dependent on the UAV, red
states are only visited by the Rover and blue states by the UAV. Black arrows and text
indicate global actions. D.P. = Distressed person, ! = FALSE, ∨ = OR, ∧ = AND

The missions states are illustrated in Figure 2 and a detailed explanation of the states
can be seen below:

• Mission start: The mission is defined and the Rover and UAV is ready to be
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Search and Rescue - Land 5

deployed.

• Search D.P: The UAV is flying above the area searching for distressed persons
with its camera.

• Map, Search D.P: The Rover is mapping the area as well as searching for distressed
persons.

• Identify: The Rover or UAV finds a distressed person and identifies it.

• Deliver Supplies: The UAV delivers supplies to the distressed person.

• Track D.P: The Rover tracks the distressed person in the event of it moving around.

• Mission Complete: The map is full explored and potential distressed persons are
found and delivered supplies to.

2.3 Communication

The primary software used for communications, both between subsystems and inside a
subsystem, is ROS2. ROS2 enables communications via:

• Topics

• Services

• Actions

Topics will be primarily used in the communication utilizing ROS2. Furthermore, the
communications between the Base Station, Rover and UAV is accomplished through a
network (which enables the use of ROS2 topics). While running simulations on a single
computer, a bridge network will be employed to communicate between the different sys-
tems locally, whilst running on hardware, each system will act as host on their computing
platform and communicate over Wi-Fi.
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Search and Rescue - Land 6

3 Base Station

Figure 3: Schematic view of the Base Station’s launch file.

The purpose of the Base Station is to plan and coordinate the missions. It will send
instructions to the Rover and the UAV and make sure they execute the mission goals.
The Base Station is also responsible for running Rviz2, which visualizes the LIDAR-data
and positioning. Figure 3 shows an overview of the base station’s responsibilities.

3.1 Discovery and Search Algorithm

To find distressed persons, different algorithms will be used depending on the phase of
the mission, explained in Section 3.1.1 and Section 3.1.2.

3.1.1 Phase one

During phase one, the area will be mapped by the Rover to prepare for phase two. To map
the environment, the Rover will run a discovery algorithm called Frontier-Based explo-
ration. This algorithm uses frontiers as boundaries between open space and unexplored
space. The idea is then to move towards this boundary to gain the most new information
about the world. By moving the Rover towards this boundary, it will use SLAM to scan
the nearby unexplored area and update the map. By continuously doing so, the whole
area will be explored. [11]

While the Rover maps the area, the UAV will run a predefined search pattern over the
entire environment, searching for distressed persons. Different patterns will be tested
depending on the time it takes the Rover to map the environment. One idea could be to
move in a parallel search pattern across the environment.

3.1.2 Phase two

Once the area is mapped, then the resulting occupancy grid will be used to create a
grid representation of the area. This will be accomplished by changing the resolution of
the resulting occupancy grid from phase 1, changing each grid point from a resolution of
0.25 to 0.5 meters. That is, each grid point will be an average of four grid points in the
original occupancy grid. This occupancy grid will then be masked such that all obstacles
are removed by assigning them the value -1 (representing spaces which are disregarded)
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Search and Rescue - Land 7

and the rest of the space is assigned the value zero. This occupancy grid will be used to
model the most probable positions of a distressed person.

Let X = {x1, x2, ..., xn} be a set representing a partitioning of the free space (space not
occupied by obstacles) in the map into quadratic disjoint areas of the same size. The
problem is formulated in terms of locating a moving distressed person zt in the areas xi

during discrete time steps t. We associate with the set X a probability mass function pt
which defines the probability of the distressed person zt occupying the locations xi ∈ X
during a time step t, that is, pt(xi) = P (zt = xi). It holds that 0 ≤ pt(xi) < 1, and that∑n

i=1 pt(xi) = 1, and thus, pt truly defines a probability density function. Furthermore, we
restrict ourselves to the vehicles occupying a single location at a time, with an orientation
north, west, south, or east, and only being able to move between locations in the same
directions (that is, not diagonally). We let the upscaled and masked occupancy grid
represent our set of locations X.

We define for each robot a directed and connected graph G = (V,A), where V represents
the different possible nodes and A the possible actions (edges) between them. For the
Rover, this means that V is chosen to be all the locations x ∈ X with an attached
orientation, θ, which can be either north, east, west, or south. Thus, for the Rover, the
edges a ∈ A represents either rotations in the same location or moving in the current
orientation to a new location. If there is something obstructing the path between the
locations, then that a will not be included in the set A. For the UAV, which is assumed
to be omnidirectional, V = X\{no-fly zones}, and a ∈ A is chosen such that the locations
in V are connected to its neighbors.

Let φ(xi) denote a search function which acts during a discrete time step, returning
φ(xi) = 1 if a distressed person was detected during the time step, and φ(xi) = 0 other-
wise. We assume that there is a chance for false negatives during searching of a location
xi, and therefore associate a probability of detection pφ(xi) to φ(xi). That is, given that
a distressed person occupies a location in the area searched by the searcher during the
time step t, then pφ(xi) is the probability of detecting the distressed person. We do not,
however, model the chance of false detection, instead the probability of false detection is
kept close to zero by requiring that the detection algorithm spots the distressed person
for many consecutive frames. Furthermore, should a false detection occur, then the target
tracking algorithm will quickly lose the non-existent target and the target will be counted
as lost, and thus, the search will resume with the previous distribution of the probability
mass function.

A searcher may detect a distressed person in an area around the searcher’s position xi,
depending on the sensor type and how it is mounted. Therefore, we consider the search
function φ(xi, θ,X) to not only operate on xi, but over the set of locations x ∈ X. The
detection chance pφ(xi, θ,X) is modelled to depend on the sensor’s performance range,
that is, the detection chance is 0 outside the field of view of the sensor and may vary
inside the field of view depending on the sensor type and its mounting. This method of
modelling the field of view of the searchers is inspired by [12].

Since the Rover’s and UAV’s cameras operate using different perspectives, the probability
of detection for the locations x ∈ X in the same vehicle location and with the same
vehicle orientation, will be different. The Rover, with its position perpendicular to the
ground plane, will approximately sense targets in a cone, see Figure 4. The RPi camera
has a horizontal field of view of 62.2◦ [4], which will approximated to being able to view
unobstructed points x ∈ X in a 45◦ cone emanating from the middle of the location that
the Rover is positioned in, with locations at the edge of the periphery associated with a
lower detection chance. The UAV’s camera on the other hand is mounted parallel to the
ground plane. The RPi camera has a vertical field of view of 48.8◦ [4], which means that
the view from above depends on the orientation of the UAV. We choose to disregard this,
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Search and Rescue - Land 8

and approximate the field of view as symmetric around the UAV’s position, see Figure 5.
Once an area is searched by one of the vehicles, the result of the search is used to obtain
the posterior probability for pt, using Bayes’ rule and the detection probability for each
location x ∈ X.

High det prob

Small det prob

No det prob

Obstacle

Figure 4: Schematic view of the search function for the Rover. The dashed line represents
the 45◦ cone emanating from the middle of the Rover’s location. The edges of the camera-
view have a lower detection rate than the middle of the view. The part of the view
obstructed by the obstacle has zero detection rate.
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High det prob

Small det prob

No det prob

Figure 5: Schematic view of the search function for the UAV. The edges of the camera-
view have a lower detection rate than the middle of the view. The UAV’s search function
is, as opposed to the Rover’s, assumed to be agnostic to orientation in a given location.
Note, the size of the detected area is only for visualization, the UAV will have a larger
swathe of red high detection locations around it, with a brim of yellow low detection
around it.

This method is quite general and works well in that it fuses the information from multiple
searchers. It can also quite easily be extended to use more information about the scenario.
If, for instance, there is some prior information about the distressed persons’ location, say
they lit a distress beacon, then it can be incorporated into the prior distribution of pt.
Furthermore, if there is information about the distressed persons’ movement, such as
speed, movement pattern and so on, then a motion model can be attributed to them.

In summary, we have defined the locations that can be searched, how they can be searched,
established a representation of the knowledge gained through the searching in the form of a
probability mass function, and also detailed a representation of how the vehicles can move
between locations. Now it only remains to choose a decision policy for how the vehicles
will move between the locations. We will employ a decision policy which boils down to
a Markov chain. The Markov chain is obtained by using the graph (V,A) to generate
a stochastic matrix Pt, which defines the possible state transitions and associates state
transition probabilities.

By considering every node in V as a state for the searcher, then the possible state tran-
sitions are defined by A, and the associated state transition probabilities are obtained by
normalizing the target probabilities in the possible states’ search function (with respect to
the prior). The associated probability for the turning state transition for the Rover might
be reduced (and thus the moving state transition increased) with some tuning parameter
in order to disincentivise too much turning in place. Thus, we define a stochastic matrix,
Pt, by considering A and associating the edges with the state transition probabilities.

Pt will also need to be updated every time pt is updated, since the underlying probabilities
used to compute the state transition probabilities will have changed. In order for the
amount of calculations to be feasible, the Markov chain will be of the third degree, that
is, three steps in the chain (three movements) will be calculated at a time. This means
that the updated posterior is only used for three steps at a time. The result is that the
communication between the robots and the Base Station, which computes the updated
probabilities and the Markov chain steps, will be limited, but for two out of three steps
outdated information will be used to make the decision.
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This decision policy has a few advantages: firstly, it is weighted to prefer the locally
optimal policy, secondly, the stochastic nature of the policy will lead to some locally
non-optimal decisions that can disrupt evasive actions of an evading target.

Unfortunately, this method only works for searching for one distressed person. The prob-
ability mass function which is updated is essentially a marginalized version of the prob-
ability mass function describing the movement of all the distressed persons. However, as
it is likely that the distressed persons will move independently, this is not a big problem.
We will find multiple distressed persons by restarting the method after convergence, but
it could have been handled by using multiple ’marginalized’ probability density functions,
such as in [3].

3.2 Task Planner

The task planner will be responsible for coordinating the UAV and the Rover during
the mission. The robots have different capabilities, meaning that one of the robots can
perform tasks that the other one cannot. E.g., the UAV can easily fly back and pick up
supplies, which is more cumbersome for the Rover. The task planner will take this into
account and give the robots tasks depending on their capabilities to complete the mission
according to Figure 2. All different behaviors can be seen in Section 3.2.1

3.2.1 Behaviors

The behaviors listed below are actions that the task planner will be able to instruct the
robots to perform. The behaviors will be decided based on information that the task
planner receives from the robots.

Rover The Rover will have the following behaviors.

• Map area - The Rover will run a discovery algorithm to map up the area. When,
complete, it will inform the Base Station that Phase one is completed.

• Search an area – The Rover will search a selected area for distressed persons. When
completed, it will inform the Base Station.

• Track a person – The Rover will follow the distressed person until the UAV arrives
with supplies.

• Land UAV – Stop the Rover to land the UAV.

UAV The UAV will have the following behaviors.

• Phase one search - The UAV will search the whole environment for distressed persons
with a predefined search pattern.

• Search an area – The UAV will search a selected area for distressed persons. When
completed, it will inform the Base Station.

• Collect supplies – The UAV will travel to the supply point and collect supplies.

• Deliver supplies – The UAV will deliver the supplies to the distressed person.

• Land – The UAV will perform a landing maneuver on the Rover or on the ground.
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• Track a person – The UAV will follow the distressed person until the Rover arrives.

• Take-off - The UAV will perform a take-off maneuver from the Rover or from the
ground.

3.3 GUI

A simple GUI will be implemented in order to visualize the mission and add a simple way
of interacting with the mission. The GUI will be able to visualize the map. including the
rover, UAV, obstacles, No-fly zones, and distressed persons. Additionally, Rviz2 will be
displayed, which will show the exploration of the map. A rough draft of what the GUI
might look like can be seen in Figure 6.

Figure 6: A rough draft of the GUI. The drone and planed mission should also be displayed
in the map.
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4 Rover

This chapter will describe the design of the Rover. It will describe both hardware and
software, as well as different modes of operation. An overview of the Rover design for
both hardware and simulation can be seen in Figure 7.

Figure 7: Schematic view of the launch file for the Rover.

4.1 Hardware

The rover will contain a multitude of individual hardware components. An overview
showing which hardware components that communicate with each other can be seen in
Figure 8. The included hardware and short descriptions are listed below.

Figure 8: Overview of the hardware communication.

• Raspberry Pi 4 - Onboard computer with Wi-Fi.

• LIDAR, RPi LIDAR A2 from SLAMtech - Rotating laser to obtain heading
and range data that is used in SLAM.
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• RPi Camera - Camera connected to the RPi.

• Arduino - Microcontroller to receive odometer data and control the tracks.

• RC-receiver - Receiver for manual drive.

• RC-controller - Controller to manually control the Rover.

• Odometer - Instrument used to calculate the distance the Rover has traveled since
start.

• Motor servos - One servo per track to drive the Rover.

• IMU - Inertial measurement unit, used for position estimation.

• Qualisys balls - Reflective markers needed for positioning in Qualisys.

4.2 Odometry

The odometry node parses the wheel encoder data and publishes an estimate of the
position and velocity of the Rover to the ROS network. A standard message type for
odometry is published containing estimated positions, orientation, linear velocity and
angular velocity. This data is then passed to an EKF-filter and used to estimate the
position and velocity of the Rover. Equations (1 - 13) [7] describe how the parsed odometry
data is used to estimate the position and velocity of the Rover.

The different variables are explained in Table 1. The wheel encoder data is useful for
estimating the position of the rover over small distances, but drifts over travelled distance,
and is therefore mostly useful for supporting the estimation of the odometry in smaller
areas where the Qualisys system has poor coverage.
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Table 1: Variables used in the odometry Equations (1 - 13)
Variable Description

R Wheel radius
Resolution Number of ticks per revolution
TW Track width
ticksl,curr Current total number of ticks for the left track
ticksr,curr Current total number of ticks for the right track
∆t Time since previous measurement
ticksl,old Previous total number of ticks for the left track
ticksr,old Previous total number of ticks for the right track
∆ticksl Number of ticks since previous measurement for the left track
∆ticksr Number of ticks since previous measurement for the right track
∆θl Rotation in radians for the left wheel since previous measurement
∆θr Rotation in radians for the right wheel since previous measurement
∆sl Distance the left track has moved since previous measurement
∆sr Distance of the right track has moved since previous measurement
∆s Distance of the Rover have moved since previous measurement
∆θyaw Difference in yaw rotation of the Rover since previous measurement
θyaw,old Previous global yaw rotation
θyaw Current global yaw rotation
xprev Previous global x-coordinate
xnew Current global x-coordinate
yprev Previous global y-coordinate
ynew Current global x-coordinate
ω Current angular velocity
v Current linear velocity

The odometry data received from the Rover is used to estimate its current position, linear
velocity and angular velocity. The difference in number of ticks since the last measurement
is calculated as.

∆ticksl = ticksl,curr − ticksl,old (1)

∆ticksr = ticksr,curr − ticksr,old (2)

This data is then used to calculate the angular difference for each track as.

∆θl = ∆ticksl
2π

2000
(3)

∆θr = ∆ticksr
2π

2000
(4)

The angular difference is used to estimate the distance each track have moved since the
last measurement and is calculated as.

∆sl = ∆θlR (5)

∆sr = ∆θrR (6)

The estimated Euclidean distance the Rover has travelled and the difference in yaw angle
since the last measurement is then calculated as.

∆s =
∆sl +∆sr

2
(7)

∆θyaw =
∆sr −∆sl

TW
(8)
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The local rotation since the start is estimated as.

θyaw = θyaw,old +∆θyaw (9)

The current position in x and y coordinates, linear velocity and angular velocity which is
published to the ROS network is estimated as.

xnew = xprev +∆s cos(θyaw,old +
∆θyaw

2
) (10)

ynew = yprev +∆s sin(θyaw,old +
∆θyaw

2
) (11)

ω =
∆θyaw
∆t

(12)

v =
∆s

∆t
(13)

Figure 9: Visualisation of parameters in the odometry model. Source: Solderspot [10]

4.3 SLAM

The Rover will use an algorithm for SLAM. This will map the area while keeping track of
the Rover’s relative location in the that area. The SLAM-algorithm uses data from the
LIDAR and the positional data from Qualisys to map the world and localize the Rover.
The ROS2-package Slam Toolbox is used to implement the slam algorithm, and it uses
a graph-based 2D-implementation of slam. It is a continuation of SRIs old open source
slam algorithm OpenKarto [6], which had multiple popular ROS1 implementations [9].
The package requires published LIDAR data and a valid transform from the vehicle (the
base link-frame) to the vehicle’s starting position (the odom-frame). In turn, it publishes
the map in the form of an occupancy grid and the estimated position of the vehicle in the
map-frame.
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4.3.1 LIDAR

The Rplidar Ros2 package generates measurement data from the mounted LIDAR sensor,
consisting of the distance and angle to the detected objects. This data is published on
the topic \scan, and is used by Slam Toolbox. The package is maintained by Slamtech,
the producers of the RPlidar product.

4.3.2 Robot Localization

The robot localization package is a classic ROS-package which has been patched to work
with ROS2. It implements an EKF-filter which fuses data from the different odometry
sources and publishes the filtered odometry data and the associated transform from the
base link-frame to the odom-frame, which Slam Toolbox requires. The package has sup-
port for fusing data from a plethora of odometry sensors, including: GPS, IMU and wheel
encoders. There is no native support for the Qualisys message-type, however, the data
from those messages can be converted in terms of either a GPS-signal or wheel-encoder
data.

4.3.3 Occupancy Grid-Representation

As mentioned in Section 4.3, the Slam Toolbox package represents the map as a 2D-
occupancy grid. An occupancy grid is a data structure which assigns a value between
0-1 to an ordered set of cells representing the map. A value of 0 indicates a completely
unobstructed area, essentially air, and a value of 1 represents a fully occupied area, i.e
a wall. The occupancy grid-representation has a few advantages over a simple binary
representation, in that it can model uncertainty in the mapping and a cost associated
with being near objects. Mapping methods are not perfect, and thus, it is natural to
represent uncertainties in the mapping using a value in-between occupied and unoccupied.
Furthermore, since estimation of the position of the vehicle is never perfect either, it is
natural to represent the cost of entering areas around objects in much the same way. The
motion planner and motion controller (described in greater detail in Section 4.4.2) use the
occupancy grid information as weights when planning paths and while following them,
in a way that balances the costs associated to entering partially occupied areas with the
potential to save time.

Both a local and global occupancy grid is maintained, the so-called local and global
costmaps, with differing levels of resolution. The local costmap is centered around the
vehicle and has a higher resolution, but is not maintained over the whole map. The global
costmap, as the name implies, is a costmap spanning the whole explored area, but with
a reduced resolution. These costmaps serve complementary roles; the local costmap is
useful for the motion controller and motion planner in navigating the vehicle in real-time,
whilst the global costmap is needed for the motion planner and mission planner to plan
and coordinate the actions of the vehicle on the global scale.

4.4 Navigation

The Rover uses a motion planner to find the best path from its current position to the
goal nodes decided in the search algorithm. To follow the path, a motion controller is
used.
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4.4.1 Motion Planner

The motion planner will use the goal nodes delivered by the Search Algorithm to plan
out a path for the Rover. It will use information from SLAM to calculate a path that
does not collide with obstacles. An A* motion planner from Nav2 is already implemented
and works in simulation. In Nav2, there are many planners with different pros and cons.
During the project, different planners will be tested and evaluated and the best planner
for our mission will be chosen.

4.4.2 Vehicle Motion Control

The Rover will also have a vehicle motion controller. It ensures that the Rover follows
the path provided from the motion planner. It has to take into account the freedom of
movement of the vehicle it controls, the Rover is a non-holonomic skid-steered robot and
can therefore only use a subset of controllers which support those specifications. A path
tracking controller from Nav2 using a regulated pure pursuit implementation is already
in use. The Rover will, however, need two different motion controllers: one for controlling
the vehicle while tracking a target, and another for the rest of the time. The need is
motivated by the fact that the motion controller used while tracking needs to not simply
follow a path in the most efficient manner, but also maintain an angle to the target while
moving. This is important since the camera needs to be pointed towards the target during
tracking, or else the Rover risks losing the target. Furthermore, the Rover will for now
not reverse, but instead turn around and move forward, which probably is not the most
optimal solution and will most likely change.

4.4.3 Motor Controller

A motor controller is already implemented on the Rover. It uses a pair of PID-controllers
to control the motor output of the Rover. One is responsible for the heading speed and the
other for the yaw speed. The controller is needed for the motor output, since the dynamics
of the Rover is nonlinear and not particularly well-approximated with a linear equation.
Especially, the power needed to overcome the initial friction while turning in place has
deadzone-characteristics. However, after the initial friction is overcome, the relationship
between the motor output and achieved velocity is far closer to a linear relationship. Thus,
the integrating part of the PID-controllers is the most important, as it is used to overcome
the initial friction.

4.5 Tracking

Tracking will be used in order to identify and continuously estimate the position of a dis-
tressed person. The tracking should therefore be able to distinguish between a distressed
person and a stationary distressed person.

4.5.1 Recognition

While the Rover is not tracking a distressed person, an image recognition algorithm will
run, tasked with identifying distressed persons. Image recognition algorithms generally are
more computationally intense than tracking algorithms, but do not need to be initialized
with a target in the frame. Therefore, it is suitable to use in order to detect distressed
persons in the whole frame, but less good at estimating the target position from frame to
frame. The algorithm will search for the presence of colored pixels, using a sliding window
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over each frame, to exhaustively search for color. Since the RGB-space is less robust in
handling noise, the data will be converted to the HSV-space before the algorithm is
initiated. This method assumes that the environment used is white and that the different
kinds of distressed persons have distinct and different colors, so that the color searched
for is only present when a distressed person is in frame.

The higher computational complexity will mean that the algorithm will not be able to
be run on every received image, but will necessarily have to be quick enough that the
distressed person is not missed.

4.5.2 Tracking Algorithm

The Rover will use a modified Camshift Algorithm to handle the tracking of distressed
persons. It will combine the Camshift Algorithm [1] with a Kalman Filter using a motion
model for the target. Additionally, a pinhole camera model for the monocular camera
module will be used to estimate the target’s distance from the Rover, achieving 3D track-
ing, as opposed to the 2D tracking, which the traditional algorithm achieves.

The classical Camshift Algorithm is an improvement of the Meanshift Algorithm. The
Meanshift is a non-parametric clustering algorithm, which, given an initialization, uses an
iterative search to find the nearest dominant peak in a probability distribution. The idea of
the algorithm is illustrated in Figure 10. More rigorously, given n samples xi, i = 1, 2, ..., n
in Rd, then the meanshift vector m(x) is defined as

m(x) =

∑
xi∈Sh

K(xi − x)xi∑
xi∈Sh

K(xi − x)
, (14)

where Sh is a closed ball in Rd, centered on x, and K is a kernel function which weights
points xi inside Sh. Thus, the meanshift vector forms an average, with respect to the kernel
function K(x), of the samples in a neighborhood Sh around a point x. Now consider the
difference m(x)−x, which corresponds to a mean shift, i.e a shift to the densest region in
Sh. The iterative Meanshift Algorithm computes the mean shift given some initial point
x0, and then iteratively recomputes the mean shift using the output mean shift from the
previous iteration as a new point in the algorithm, xk+1 = m(xk) − xk. The method
converges to some local optima with respect to the density of the samples in the data.

In the target tracking setting, an image with an initial window containing the target is
used to create a histogram. Since RGB-space is prone to noise, usually the HSV-space,
which separates out hue (H), saturation (S), and value (V) from an image, is used instead
[1]. While more of the dimensions can be used, the standard algorithm is based on the
hue, and thus it is the hue which is sampled from the target in the image and stored as a
1-d histogram.

A probability distribution is computed using the histogram in a process called back pro-
jection. A back projection of an image given a model histogram is computed by, for each
pixel value, finding the corresponding bin in the histogram and assigning the back pro-
jected image the value stored in the bin at the sampled point. Thus, an image, I(x, y), is
attained which represents a probability distribution of the target in the image.

The back projected image I(x, y) can then be used as an input to the Meanshift Algorithm,
along with an input window representing the closed ball, in order to locate the target.
Most commonly, the kernel function is chosen as an image moment, Mi,j , in the meanshift
algorithm for images. The image moment represents a weighted average of the pixel
intensities of an image I(x, y), and is computed as

Mi,j =
∑
x

∑
y

xiyjI(x, y). (15)
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Figure 10: The Figure shows an example of the Meanshift Algorithm. The blue dots
represent samples of some distribution, and each black circle represents the closed ball in
an iteration of the algorithm, which terminates at the red circle having reached some goal
threshold.

Specifically, the first momentsM1,0 andM0,1 are typically used for the x- and y-coordinate
respectively. From equations (14) and (15), it follows that x- and y-coordinates are nor-
malized by the zeroth moment M0,0. Using the back projected image I(x, y) and the
Meanshift Algorithm with the image moments kernel, the following center position (xc, yc)
is obtained for every iteration:

(xc, yc) = (
M1,0

M0,0
,
M0,1

M0,0
). (16)

The Meanshift Algorithm terminates once the initial window has been moved to a local
optima in the back projected image. This process is then repeated for every incoming
image from a video feed, where the previous converged position is used as initial position
in the subsequent frame.

The Meanshift Algorithm works well in a setting where the tracked target has a constant
size, that is, it struggles with targets moving to and from the camera, deforming targets,
or partially occluded targets. The Camshift Algorithm’s contribution to the Meanshift
Algorithm is in tackling this problem by adaptively changing the frame size s of the target
as a function of the zeroth order moment M0,0. In the original paper [1] the window size
s was updated as

s = 2

√
M0,0

256
, (17)

which will be employed in the tracking algorithm. The Camshift Algorithm is summarized
as a flowchart in Figure 11.
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Initial search window size and location,
create hue histogram

Set search window center and size from (X,Y) Color histogram lookup in region

Back project image

HSV-image

Find Meanshift vector

Meanshift

Converged?

Meanshift Algorithm

No

Yes

Figure 11: The Figure shows a flowchart of the Camshift Algorithm. The dashed box
represents the steps in the Meanshift Algorithm. The algorithm starts at the rounded
rectangle and terminates once there are no new HSV-images to process.

In order to incorporate the depth-dimension in the estimated position of a target, a pinhole
model will be employed. Given the focal length of the camera, and given the height of an
observed object in a frame, the distance of the object to the camera can be estimated [2].
Thus, the depth of the target can be measured using images from the camera.

The Camshift Algorithm will be extended to include a Kalman Filter in order to achieve
better tracking in the presence of occlusion of the target or other disturbances. The target
will be described by a constant velocity model, which will be used in the time update of
the Kalman Filter to estimate the target in a dead-reckoning fashion when it is occluded.
Occlusion will be measured using the Bhattacharyya coefficient [5], which is a measure of
the overlap between two statistical samples. In this case, the statistical samples consist of
the original histogram of the target, p(x), and a histogram from the converged Camshift
Algorithm, q(x). Given these quantities, the Bhattacharyya coefficient, CB(p, q), is defined
as

CB(p, q) =
∑
x∈X

√
p(x)q(x), (18)

where X is the set of hue-bins in the histograms, and it holds that 0 ≤ CB(p, q) ≤ 1. A
low value of CB(p, q) indicates similar samples, and a high value indicates dissimilarity
between the samples. The coefficient is used by fixing a threshold α, beyond which the
object is said to be occluded. When the target is visible, the output of the Camshift
Algorithm will be taken as a measurement update in the Kalman Filter. The time update
will be used to update the starting position of the Camshift Algorithm between frames.
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See Figure 12 for an overview of how the combined Camshift and Kalman algorithm will
work.

Initial search window size and location,
create hue histogram

Kalman time update predicted position

Camshift Algorithm estimated position

Occluded?

Camshift estimate as measurement update in Kalman

No

Yes

Figure 12: An overview of the Camshift Kalman algorithm to estimate the position of
the distressed persons. Occlusion is measured using the Bhattacharyya coefficient and a
predetermined threshold.

4.6 Modes of Operation

There are two modes of operations for the Rover, manual and autonomous mode. On the
RC controller there is a switch which is used to switch between the modes. The Arduino
receives the RC-signals and transmits them to the master com node, which decides if the
Rover should drive autonomously or manually.

4.6.1 Manual Mode

If the Rover is in manual mode, the master com node will translate the RC signals into
motor signals. The manual mode has the same software as the autonomous mode, but the
difference is that the missions will be performed as the driver desires and not performed
by discovery algorithms and task planners.

4.6.2 Autonomous Mode

In autonomous mode the Rover is driven autonomously, and the motor signals depend on
controllers, planners, and search algorithms.
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5 UAV

The overview of the UAV subsystem is visualized by the UAV launch file in Figure 13.
When running the launch file, it initiates the UAV offboard controller, the camera and
the image processing nodes, and the node for the motion planner. If the UAV is to be
simulated, the launch file spawns the UAV in Gazebo and sends a command to the Base
Station to start the simulation. If the UAV is running on HW, the microRTPS agent is
initiated.

Figure 13: Schematic figure of the launch file for the UAV.

5.1 Hardware

The UAV is a quadcopter based on the Lumenier QAV-R 2 frame with components listed
in Section 5.1.1. An overview of the system can be seen in Figure 14, where both HW
and SW components are illustrated.

Figure 14: Overview of the UAV hardware.

5.1.1 Hardware Components

• Pixhawk 4 - Flight controller with internal IMU and barometer

• Raspberry Pi 4b - Onboard computer with Wi-Fi

• RPi camera - Camera connected to the RPi

• RC-receiver - Receiver for manual flight

• Motors and ESC - Propeller motors and Electronic Speed Controller
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• Battery - 11.1V Lithium Polymer (LiPo) battery

• RC-controller - Controller connected to the UAV for manual flight

5.1.2 Safety Features

The UAV will have some safety features to minimize the risk of crashes and bodily injury.
The Pixhawk already has some built-in fail-safes that, when triggered, will land the UAV
immediately. The fail-safes used are the following: A fail-safe which activates when the
battery has reached a specified minimum voltage, an RC loss fail-safe that will activate
when the RC-signal to the manual controller is lost, and a fail-safe which activates when
the Pixhawk loses connection to the RPi.

In addition to these fail-safes, a fail-safe for losing Qualisys positioning data will be imple-
mented. The UAV will land if it has not received positioning data in the last 2 seconds.

The RC-controller will also have a kill switch that stops all rotors, and the user will be
able to switch to manual control at any time.

5.2 Software

In this section, all software on the onboard RPi will be presented.

5.2.1 Onboard Communication

The communication between the RPi and the Pixhawk is carried out over a microRTPS
bridge. This bridge converts ROS2 topics to uORB topics the Pixhawk can interpret. An
agent on the RPi receives data from a ROS2 topic, converts it, and sends it to a client
on the Pixhawk. If data is sent from the Pixhawk instead, it works the other way around
and the agent publishes the received data on a ROS2 topic.

A ROS2 node called ”offboard control” acts as an intermediary between the agent and
the rest of the system. The node needs to publish a position or speed command to the
Pixhawk with a frequency of at least 0.5 Hz, otherwise a fail-safe will be initiated, and
the UAV will land. The node will by default publish these commands with a frequency of
10 Hz.

5.2.2 Position Command

To control the UAV, a ROS2 ”Pose” message containing a desired position and orientation
will be sent. This message will be sent to the ”offboard control” node on the topic
”UAV trajectory setpoint pose” and will then be sent to the Pixhawk. The UAV will
then fly to the position and, with its internal PID controllers, hold that position. This
will allow the user to send simple commands with a position to the UAV, which stabilizes
around the point by itself.

5.2.3 Position Feedback

The internal controllers in the Pixhawk need external positioning to close the feedback
loop. In the simulation, a GPS module is mounted to the UAV, which provides it with
position data. However, on the HW, the UAV will depend on the Qualisys positioning
system in Visionen. The Pixhawk has support for receiving a ”VehicleMocapOdometry”
message which contains position, orientation, velocity and angular velocity. A function to
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convert the received position from Qualisys to a ”VehicleMocapOdometry” message will
be implemented. The ”offboard control” node will call a callback function when receiving
position data, convert it to the correct message, then publish this to the microRTPS agent.
The fact that the UAV and the Qualisys system have different coordinate frames needs
to be taken into account and converted in the process.

5.2.4 Recognition and Tracking Using the Camera

The UAV will use the same image recognition algorithm as the Rover to identify distressed
persons. Furthermore, the UAV will also use the Camshift Kalman Algorithm to track
the moving distressed persons. However, unlike the Rover, a depth estimate will not be
computed since, as long as the UAV does not tilt overly much, the camera plane of the
UAV will line up with the desired tracking space (the 2D projected plane of the room
onto the floor). Furthermore, the depth dimension of the UAV’s camera can be better
estimated using the estimated height of the UAV in conjunction with the Pythagorean
identity (if the target is not directly underneath the UAV).

The bird’s eye view, combined with the higher degree of freedom of movement in com-
parison with the Rover, makes the UAV a better tracker in a free space. However, it is
severely limited by the fact that the distressed persons can move into the no-fly zones, in
which the UAV cannot enter. Excepting, attempting to gain altitude and then tilting the
UAV in the air at the edge of the no-fly zones, there are no reliable ways for the UAV to
track the distressed persons in the no-fly zones. Given this problem, it will be the main
responsibility of the Rover to track the moving distressed persons, whilst the UAV will
fulfill a supportive role of attempting to track the targets to its best ability until the Rover
has intercepted them, whereupon the UAV will go and fetch supplies.

5.2.5 Motion Planner

A motion planner will be implemented for the UAV. The motion planner will calculate a
way to fly using a sequence of waypoints from a start point to a goal point, while avoiding
No-fly zones. In Nav2, there are many planners with different pros and cons. A big minus
for the Nav2 motion planners is that they are 2D-based, and thus, will not take into
account the altitude of the UAV. However, the aim is to keep the UAV at the same height
throughout the mission, so there is not much lost in discarding the altitude dimension.
During the project, different planners will be tested and evaluated and the best planner
for our mission will be chosen.

No-fly Zones
A No-fly zone is an area where the UAV is not allowed to fly in. The No-fly zones will be
initialized in the Base Station, which means that the motion planner will know to not plan
paths through No-fly zones. No-fly zones can therefore not be discovered with algorithms
such as SLAM, unlike the obstacles for the Rover.

Safety Distance
The UAV will fly at a constant height of 2 meters. In addition, a safety distance of 50
cm to distressed persons will be implemented that will be taken into consideration when
landing and delivering supplies.
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5.2.6 Take-off and Landing Services

ROS2 services will be implemented for taking off, and landing the UAV. These services
will receive a start command, execute the action, and send back a result indicating that
the UAV has finished its action.

The take-off service will receive a take-off command and the UAV will start flying up to an
altitude between two and four meters, where it will hover. When the UAV has reached the
correct altitude, the service will send a message back confirming the take-off is completed.

The landing service will receive the position of the landing site when it is called. The
UAV will then fly to a position above the landing site using the motion planner. When
it has reached the position above the landing site, the UAV will start to descend until it
has landed. When the landing is complete, it will send a confirmation message that it has
landed.

In addition to the basic functionality for take-off and landing, the UAV will be able to
start and finish on top of the Rover. Take-off from the Rover will not differ too much
from starting on the ground, since the only difference is the starting height. Landing on
the Rover will require that the Rover is stationary, and the landing site coordinates sent
to the landing service must include the actual height of the Rover’s landing platform.

To prevent the UAV from landing on a distressed person, a safety feature will be imple-
mented that will cancel the landing if a distressed person is identified below the UAV.

5.2.7 Deliver Supplies

The UAV will deliver supplies to the distressed persons while the Rover tracks them.
The UAV will pick up supplies at a given supply point, whereupon it will return to the
distressed person to deliver the supplies. Due to the scope of the project, it will not be
prioritized to implement a service which picks up physical supplies. Instead, when the
UAV has hovered over the supply point and then moved to the distressed person where
it descends to the height of one meter, it will perform a shaking action to signal that
the task is completed. The shaking action will be implemented as setting two position
commands to the UAV on either side of the current position. It is also possible to signal
this by spinning horizontally.

5.3 Modes of Operation

The UAV has two main modes of operation: Manual and autonomous. When the UAV
is in manual mode, it is controlled by the RC-controller, and in autonomous mode, the
UAV is controlled by the onboard RPi.

5.3.1 Manual Mode

There are a few different types of manual modes: Manual/Stabilized, Altitude and Posi-
tion. The manual/stabilized mode lets the user fly the UAV fully manually, altitude mode
stabilizes the UAV at an altitude using the barometer to measure height, and position
mode utilizes the external positioning to hold a position which the user can change using
the controller. The position mode will be used to verify that the UAV utilizes the position
given by the Qualisys positioning system. When flying the UAV autonomously, the user
can at any time switch to a manual mode to take over control.
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5.3.2 Autonomous Mode

The autonomous mode, called offboard mode, implies that the UAV is fully controlled by
the onboard RPi. If the UAV does not receive data from the RPi with at least 2 Hz, the
UAV will enter fail-safe mode.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: Design Specification.pdf



Search and Rescue - Land 27

6 Simulation

An important part of the project is the simulation environment. The system uses SIL,
which enables testing in simulation in contrast to only testing on hardware. This will
be crucial for the testing because of the limited testing-time, and minimizes the risk of
damaging the hardware. The simulations will be handled in the base station system.

6.1 Gazebo11

Gazebo is a simulation software that will be used in the project. It is integrated into ROS2
and can handle communicating via ROS2 topics, which is appropriate for the project. It
can simulate the world and multiple robots, as well as handle the physics in the simulation.

6.2 Simulation of the Robots

Generally, when simulating robots in Gazebo11, SDF-files are used. An SDF-file includes
the information that Gazebo11 needs to simulate the robots accurately, such as, dimen-
sions, sensors, materials etc. The SDF-files for the UAV and the Rover have slightly
different origins in how they are created and where they are obtained from.

6.2.1 Rover

The Rover’s SDF-file is created using a URDF-file. The URDF-file is where the Rover
model is described, including its physical measurements and the sensors used with asso-
ciated positions. This is then used to create the SDF-file. The URDF-file was created
to describe the project’s Rover as closely as possible, and used the Rover’s (the specific
Rover used in this project’s) dimensions.

6.2.2 UAV

The UAV has a different method for generating the SDF-file. It is generated when com-
piling the PX4-Autopilot git project. The SDF-file defines the structure of the UAV,
including its sensors. Furthermore, the git project contains a software program which
simulates a PX4 flight controller. The simulated PX4 is able to communicate with the
microRTPS bridge running on the simulated UAV. However, the simulated drone has dif-
ferent dimensions than the actual drone used in this project. This is because the simulated
UAV is a standard UAV from the SIL simulation in the submodule PX4-Autopilot and
has all the sensors and flight controller already built in. To create a UAV from scratch
that has the same dimensions and structure would take time, and analyzing the benefits
of creating a new model, it does not seem beneficial. The simulated UAV is slightly larger,
but should not have any major impact on the testing using the simulation, since the flight
controller will control the different sizes of UAV similarly. Since the main purpose of the
project is to execute a mission and not looking into controlling the UAV, the fact that the
UAV will behave slightly different between simulation and real tests can be overlooked.
A camera will be implemented on the simulated UAV to make it possible to test image
recognition and tracking in simulation.
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6.3 Simulation of the Map

The tests in the project will be conducted in Visionen. Therefore, a simulation environ-
ment which is designed to look like Visionen will be created. The map will have a white
floor and walls with similar dimensions as Visionen. In the simulation environment, it
will be possible to add boxes as obstacles and No-fly zones, similar to what will be a part
of the physical mission in Visionen.

6.4 Simulation of Distressed Persons

To implement moving distressed persons in simulation, a similar method to simulate robots
will be used. An SDF-file will be constructed and pre-defined movement patterns, such as
moving in a line or a circle, will be used to emulate the movement of a distressed person.
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