
User Manual
Search and Rescue - Land

Version 1.0

Author: Rickard Wretlind
Date: December 5, 2022

Status

Reviewed Jakob Åslund 2022-12-05

Approved Jakob Åslund 2022-12-05

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Project Identity

Group E-mail: oplandlubber@gmail.com
Homepage: https://tsrt10.gitlab-pages.liu.se/2022/sbd/
Orderer: Jakob Åslund, Linköping University

E-mail: jakob.aslund@liu.se
Customer: Torbjörn Crona, Saab Dynamics

E-mail: torbjorn.crona@saabgroup.com
Course Responsible: Daniel Axehill, Linköping University

E-mail: daniel.axehill@liu.se
Advisors: Anja Hellander, Linköping University

E-mail: anja.hellander@liu.se
Linus Wiik, Saab Dynamics
E-mail: linus.wiik@saabgroup.com
Joel Wikner, Saab Dynamics
E-mail: joel.wikner@saabgroup.com
Åke Johansson, Saab Dynamics
E-mail: ake.johansson1@saabgroup.com

Group Members

Initial Name Responsibility E-mail
(@student.liu.se)

DG Daniel Goderik Project Manager dango893
AL Anton Larsson Head of Design antla594
DS Daniel Sandvall Head of Hardware - Drone dansa201
SF Sebastian Fagerst-

edt
Head of Testing sebfa953

ES Eric Sevonius Head of Software erise263
RW Rickard Wretlind Head of Documentation ricwr413
AW Albin Westlund Head of Hardware - Rover albwe662

Document History

Version Date Changes made Sign Reviewer

0.1 2022-11-28 First draft DG Jakob Åslund

0.2 2022-11-30 Second draft DG Jakob Åslund

0.3 2022-12-05 Third draft ES, AL, SF Jakob Åslund

0.4 2022-12-05 Fourth draft DS, SF Jakob Åslund

1.0 2022-12-05 First version RW Jakob Åslund

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Contents

1 Introduction 1

1.1 System Description . 1

1.2 Definitions . 1

2 Installation 3

2.1 Docker . 3

2.2 Raspberry Pi Configuration . 3

2.3 Using Docker Images and Containers . 3

2.4 Base Station . 4

2.5 Rover . 5

2.5.1 Docker Setup . 5

2.5.2 Raspberry Pi Configuration . 5

2.6 UAV . 5

2.6.1 Docker Setup . 5

2.6.2 Raspberry Pi Configuration . 5

3 Qualisys 6

3.1 Defining bodies . 6

4 Base Station 7

4.1 Mission Setup . 7

4.1.1 Hardware . 7

4.1.2 Simulation . 7

4.1.3 No-fly Zones . 8

4.2 Spawning Distressed Persons . 8

4.2.1 Controlling Distressed Persons . 9

4.3 Starting the mission . 10

4.4 Restarting mission . 10

5 Rover 11

5.1 Hardware . 11

5.1.1 Powering and Charging . 11

5.1.2 RC Controller . 11

5.1.3 Usage . 11

5.2 Simulation . 12

5.2.1 Usage . 12

6 UAV 13

6.1 Hardware . 13

6.1.1 Powering and Charging . 13

6.1.2 RC Controller . 13

6.1.3 Propellers . 15

6.1.4 Usage . 15

6.2 Simulation . 16

6.2.1 Usage . 16

Search and Rescue - Land 1

1 Introduction

This document is the user manual for the Search and Rescue project conducted in the
course Reglerteknisk Projektkurs - TSRT10 at Linköping University during autumn 2022.

The document contains information on how an operator should install and interact with
required software, as well as how to interact with the hardware. In order to give the reader
insight and some basic knowledge, it also contains information of the system and how it
is constructed.

1.1 System Description

The entire system is run inside multiple Docker containers[2], which in of themselves
contain the required software for their specific tasks. The project is built in three differ-
ent subsystems: Base Station, Rover and UAV. Each subsystem has two corresponding
containers, one for hardware and one for simulation. The user will always specify which
container should be run, as it contains the software needed for its intended purpose. The
systems also utilize software in the loop, which means that the same functionality works
on both hardware and software.

Figure 1: Overview of the structure for the containers

The UAV is equipped with an onboard flight controller (Pixhawk 4) which is connected to
an RPi, and a camera used for image processing. There is also an RC-controller connected
to the UAV for optional manual control of the UAV

The Rover is equipped with an RPi, an Arduino for actuator control, a Lidar for map-
ping and localization, a camera for image processing as well as an IMU (which is not used).

The Base Station is able to control the entire mission as well as displaying a simulation
environment and Rviz2-window. Rviz2 visualizes the mapping and localization for the
Rover, the planned paths from the motion planner, No-fly Zones for the UAV as well as
the image feed from the vehicles’ cameras.

1.2 Definitions

Below some definitions and acronyms are explained which are recurring in this document.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 2

• Rover - An unmanned tracked vehicle.

• UAV - An unmanned aerial vehicle.

• Agent - A participant in a mission, Rover and/or UAV.

• Base Station - A computer that handles the information from the Rover and UAV.

• Distressed person - In simulation, this is a virtual marker that should be found
by the Rover and UAV. When doing real tests, this will be RC-cars colored with
bright colors.

• SLAM - Simultaneous Localization and Mapping.

• LIDAR - Light Detection and Ranging.

• SIL - Software In The Loop.

• Qualisys - Sensor system in the room Visionen that uses cameras and reflective
targets to deliver position data.

• ROS2 - ”Robot Operating System”, Framework for robot software development.

• No-fly zone - A zone where the UAV is restricted from flying into.

• PDDL - Planning Domain Definition Language.

• RPi - Raspberry Pi.

• Pixhawk - The flight controller Pixhawk 4 that is mounted on the UAV.

• HW - Hardware.

• SW - Software.

• Rviz2 - A visualization manager that displays the generated map and agent posi-
tions during the mission.

• Gazebo - Simulation environment.

• RC-car - Small cars controlled by the user that are used to simulate distressed
persons.

• $ - Denotes the start of a shell command, that is, an input command to a terminal.
It should not be included when typing a command in the terminal.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 3

2 Installation

This section describes the necessary installations that have to be done before running the
programs. The first thing that must be done is cloning the Git repository. This is done
by typing the following in a terminal

$ g i t c l one -- r e cu r s e -sub <pro j e c t s sh pa th>

2.1 Docker

The system is heavily reliant on Docker, and installing this is therefore an important
step before running the system. Installing Docker and Docker-Compose is done with the
following commands in a terminal.

$ cu r l −fsSL https : // get . docker . com −o get−docker . sh
$ sudo sh get−docker . sh
$ sudo groupadd docker
$ sudo gpasswd −a $USER docker
$ sudo apt−get update
$ sudo apt−get upgrade
$ sudo apt i n s t a l l docker−compose
$ sudo usermod −aG docker $USER
$ sudo s e r v i c e docker r e s t a r t

2.2 Raspberry Pi Configuration

• Install Raspberry Pi OS (64-bit), preferably Debian Bullseye or later.

• Enable SSH with a static IP when connected to the Wi-Fi in Visionen [1].

• Configure the camera

– Run sudo raspi-config

– Select Interface Options and Legacy Camera

– Select YES

– Reboot

• Clone the git repository sbd and initiate submodules.

$ g i t c l one -- r e cu r s e -sub <pro j e c t s sh pa th>

• Install docker and docker-compose according to Section 2.1.

2.3 Using Docker Images and Containers

This section describes how to build docker images, create docker containers, start docker
containers, and source the ROS2 workspace in containers. To create new images and
containers, Docker-Compose is used. In the docker-compose file (available at the top
level of the SBD git-repo), the different entities used during a mission (the Base Station,
Rover and UAV) are defined as services. Services in docker-compose represent a named
configuration of a docker container; which files to link as volumes, which ports to make

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 4

available, environment variables and more. Broadly, there are two services for each entity:
one for running in simulation, and one to running on hardware.

To build a new image for a service, run the command

$ docker-compose bu i ld <serv ice name>

Where ”< service name >” should be replaced by the name of the service. To create a
new container for a service, run the command

$ docker−compose run <serv ice name>

This will also start the container. To start an existing container, run the command

$ docker s t a r t − i <container name>

Where ”< container name >” should be replaced by the name of the container. To get
the name of all created containers, run the command

$ docker ps −a

To compile the ROS2 workspace in a container, run the command

$ make bu i ld

When running the system, it will be required to have multiple terminals connected to
the containers. To run the ROS2-code the terminals need to source the ROS2-worskpace,
which can only be done after the code has been compiled with make. To open an already
running container in a new terminal run

$ docker exec − i t <container name> bash

Then to source the ROS2 workspace in the terminal, run

$. i n s t a l l / setup . bash

Warning: do not source and run any ROS2-code in the same workspace as you built the
workspace with make, this can lead to unexpected errors and is an inherent part of the
ROS2 build-tool colcon.

To launch any applications with a graphical interface (including the simulation) in a
container, the xhost-server needs to be configured to be accessed inside. To do so, open a
terminal on your system and run

$ sudo xhost +

This change will hold until you restart your computer, and therefore needs to re-run every
time the computer has been turned off.

2.4 Base Station

The installation for the base station is a matter of building the required docker images.
There is a base image (shared with the UAV in simulation) which needs to be built before
building the images for the base. To build and run the required images, follow Section 2.3
with the service and container names declared in Table 1.

Hardware Simulation
Base service name base px4 base px4

Service/Container name base station host base station

Table 1: Service- and container names for the Base Station

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 5

Instead of creating a new container each time, one can start existing containers in the
same way as described in section 2.3.

2.5 Rover

This section describes the required installations for the Rover. This includes building
docker images and Raspberry Pi configuration.

2.5.1 Docker Setup

There are different docker images, that have to be built, depending on if the Rover will
be run on HW or in simulation. Follow Section 2.3 with the service and container names
declared in Table 2

Hardware Simulation
Service/Container name rover hw rover sim

Table 2: Service- and container names for the Rover

Instead of creating a new container each time, one can start existing containers in the
same way as described in section 2.3.

2.5.2 Raspberry Pi Configuration

Complete all steps in Section 2.2.

2.6 UAV

This section describes the required installations for the UAV. This includes building docker
images and Raspberry Pi configuration.

2.6.1 Docker Setup

There are different docker images, that have to be built, depending on if the UAV will
be run on HW or in simulation. For simulation, the base px4 image has to be built first,
while base uav hw has to be built before running on hardware. Follow Section 2.3 with
the service and container names declared in Table 3.

Hardware Simulation
Base service name base uav hw base px4
UAV service name uav hw uav sim

Table 3: Service- and container names for the UAV

2.6.2 Raspberry Pi Configuration

• Do all steps as in Section 2.2

• Configure the UART pins so that the RPi uses the PL011 UART [5].

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 6

3 Qualisys

When running the system on hardware in Arena Visionen it is vital to set up Qualisys in a
correct manner. Qualisys is a system in Visionen which consists of multiple cameras which
together with corresponding software (called QTM) are able to track objects defined with
markers.

The first one will have to do is to log in to the stationary computer, start a new project
in QTM and calibrate the system according to the Qualisys documentation [3].

3.1 Defining bodies

To get position data from Qualisys, the bodies need to be defined. To do this

• Select the markers to be defined.

• Right click and select ”Define rigid body (6DOF)” and name it with an appropriate
name.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 7

4 Base Station

To run the Base Station, either start an existing base station container or create one
according to Section 2.4 and Section 2.3.

4.1 Mission Setup

4.1.1 Hardware

To start a mission on hardware, start a base station host container. Compile the code
using

$ make bu i ld

Source a second terminal as described in Section 2.3. After this, compile the code in the
second terminal, typing

$ make base s ta t i on hw <arguments>

The base station hw make command has the following arguments.

Argument values default explanation

NAME String ’rover1’ Optional and used for
namespacing the rover in
Rviz2.

RVIZ true/false true Specify if a Rviz2 window
should be opened, and
configured to the Rover.

RECORD true/false false Records all ROS2 topics
into a ROS2 bag.

4.1.2 Simulation

To prepare the base station for simulation, start a base station container. Compile the
code using

$ make bu i ld

Source a second terminal as described in Section 2.3. After this, make the base station in
the second terminal, typing

$ make ba s e s t a t i o n <arguments>

The base station make command has the following arguments.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 8

Argument values default explanation

NAME String ’rover1’ Optional and used for
namespacing the rover in
Rviz2.

SIM true/false true Specify if Gazebo should
be started.

RVIZ true/false true Specify if a Rviz2 window
should be opened, and
configured to the Rover.

RECORD true/false false Records all ROS2 topics
into a ROS2 bag.

WORLD String ’slam.world’ Specify a .world file to be
loaded into Gazebo.

4.1.3 No-fly Zones

No-fly zones as specified with a .png-file. In order to fit with the dimensions of Visionen
it should be 120x120 pixels, where 10 pixels represents 1 meter. All areas where the UAV
should be allowed to fly should be colored white, whereas No-fly zones should be colored
entirely black. If one needs to change the map, it should be named: map test2.png and
the current image should be replaced with the new one. The path to the image inside the
git repository is:

$ s r c /bringup/ c f g /map test2 . png

The software will interpret the black pixels as No-fly-zones and create inflation layers
around it. In order to keep a safety distance to the outer boundaries, i.e. walls, one
should consider colouring the pixels at the edges black.

4.2 Spawning Distressed Persons

Spawning of Distressed persons in simulation is done in the base station. Once the Base
Station is built and a Base Station container is active, distressed persons can be spawned.

• In one terminal, start a Base Station docker container.

• Build base station by typing

$ make bu i ld

• Open a second terminal, source it, and compile the code by typing

$ docker exec − i t <ba s e s t a t i o n conta ine r name> bash
$. i n s t a l l / setup . bash
$ make ba s e s t a t i o n

• Once the Base Station has started the simulation in Gazebo, source a third terminal
as above.

• Now Distressed persons can be spawned with the following line

$ make dp <arguments>

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 9

• The following make file arguments are available. If BLUE line, BLUE circle, YEL-
LOW line, YELLOW circle all are false, both robot will be stationary if not con-
trolled manually according Section 4.2.1

Argument values default explanation

dpID Integer 1 Optional and used for
namespacing.

dpID2 Integer 2 Like dpID but for a second
Distressed person.

BLUE true/false true Spawn a blue Distressed
person. If false at the
same as YELLOW, noth-
ing will spawn.

BLUE line true/false false Spawn a blue Distressed
person moving on a line.
BLUE argument has to be
true. BLUE circle argu-
ment has to be false.

BLUE circle true/false false Spawn a blue Distressed
person moving in a cir-
cle. BLUE argument has
to be true. BLUE line ar-
gument has to be false.

YELLOW true/false true Spawn a yellow Distressed
person. If false at the
same as BLUE, nothing
will spawn.

YELLOW line true/false false Spawn a yellow Distressed
person moving on a line.
YELLOW launch argu-
ment has to be true. YEL-
LOW circle argument has
to be false.

YELLOW circle true/false false Spawn a yellow Distressed
person moving in a cir-
cle. YELLOW launch ar-
gument has to be true.
YELLOW line argument
has to be false.

4.2.1 Controlling Distressed Persons

When wanting to control a Distressed person other than in a circle or in a straight line.
A package called ”rqt robot steering” can be used. With this package, the linear and
angular velocities can be controlled. This package is installed in the base station docker
file. The following commands can be used to start and use the package:

• Source a base station container

• Write

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 10

$ ros2 run r q t r o b o t s t e e r i n g r q t r o b o t s t e e r i n g

• A GUI for controlling the Distressed persons will appear. Change the velocity topic
to ”dp1/cmd vel” or ”dp2/cmd vel” to control a blue or yellow Distressed person,
respectively.

4.3 Starting the mission

When all the parts of the system have been started, the mission can be started with the
following command. Remember to run ”. install/setup.bash” first, otherwise an error will
occur.

$ ros2 t op i c pub −−once / Star tMis s i on \
custom messages /msg/Mis s i on In fo \
”{cmd : Take o f f , c o l o r : [BLUE,YELLOW]}”

The color key tells which distressed person you want to search after in the mission. Only
blue and yellow is supported.

4.4 Restarting mission

If you have finished a mission, you can restart the mission by deleting the rover in Gazebo,
abort the processes in the terminal in which ’make rover’ was run, and rerun the command.
Then the mission can be restarted with the following command:

$ ros2 t op i c pub −−once / Star tMis s i on \
custom messages /msg/Mis s i on In fo \
”{cmd : Abort to i n i t , c o l o r : [YELLOW,BLUE]}”

$ ros2 t op i c pub −−once / Star tMis s i on \
custom messages /msg/Mis s i on In fo \
”{cmd : Star t phase 1 , c o l o r : [YELLOW,BLUE]}”

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 11

5 Rover

The Rover is run either on hardware or in simulation, and the configuration process differs
slightly. Below, the two processes are explained.

5.1 Hardware

The Rover is equipped with an RPi (RPi 4 Model B) as its main computer, powered by
a USB type C cable. Connected to it is an Arduino that sends signals to the motors, gets
rotation data from the wheel sensors, and gets signals from the RC remote controller that
it passes to the RPi. The Remote Controller (Futaba 4PLS) is used to manually drive the
Rover.

5.1.1 Powering and Charging

The batteries should always be charged while still inside the Rover. Switch off the main
power and plug in the power cable (XT60). Make sure that the red and black parts of
the connection match.

5.1.2 RC Controller

Manual driving of the Rover can be done by using the RC controller. Start the Rover
normally, and power on the RC controller. The DL1 dial can be used to switch between
the manual and the autonomous mode. It is done by checking the dial value mod 2, so a
single tick on the dial should do the trick. When in manual mode, the Rover can drive
back and forward with the main trigger, and rotate with the steering wheel.

5.1.3 Usage

To use the Rover on hardware, the following steps have to be made.

• Place the Rover in Visionen in the origin of the coordinate system, pointing along
the x-axis. Confirm that the Rover is defined in the Qualisys system.

• Connect to the RPi from a laptop to create a docker container, compile the code,
and launch the software.

$ ssh pi@192 . 1 6 8 . 0 . 1 2
$ cd sbd
$ docker−compose run rover hw

− − In docker conta ine r − −
$ make bu i ld

then open a new terminal. Connect to the UAV via SSH and source a new terminal
to start the simulation.

$ ssh pi@192 . 1 6 8 . 0 . 1 2
$ cd sbd
$ docker exec − i t r ove r hw conta ine r bash

− − In docker conta ine r − −
$ source i n s t a l l / setup . bash
$ make rover hw

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 12

• The Rover should now appear in Rviz2 with SLAM mapping the surrounding area.
The Rover is now ready to be run.

5.2 Simulation

Before starting a simulation of the Rover, the Base Station has to be started according to
Section 4.1.2.

5.2.1 Usage

This section will cover all the necessary steps in simulating the Rover.

• Start or create a rover sim docker container. If creating a new container, docker-
compose run rover sim should be run instead. In the second terminal, the name
of the container will be sbd rover sim run . . . instead of rover sim cont.

$ cd sbd
$ docker s t a r t − i r ove r s im cont

− − In docker − −
$ make bu i ld

− − Second termina l − −
$ docker exec − i t r ove r s im cont bash

− − In docker − −
$ source i n s t a l l / setup . bash
$ make rover s im

• The Rover should now appear in both Gazebo and Rviz2. It should instantly start
mapping the surrounding area with SLAM, which can be seen in Rviz2. The Rover
is now ready to start a mission or perform any action the user would want it to do.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 13

6 UAV

The UAV is run either on hardware or in simulation, and the configuration process differs
slightly. Below, the two processes are explained.

6.1 Hardware

The UAV consists of a Raspberry Pi 4, a Pixhawk 4, an RC-receiver, a camera, a power
module, an ESC (Electronic Speed Controller), four actuators, and a battery. All the
components are mounted on a Luminer QAV-R airframe. There are also four reflective
balls mounted on the UAV so that the Qualisys system can locate it. An RC-controller is
also available to fly the UAV.

6.1.1 Powering and Charging

The UAV is powered by an 11.1V LiPo battery connected to the power module, which
is connected to the ESC that powers all the actuators. The RPi is connected to the
power module through a voltage controller converting the voltage to 5V, and the Pixhawk
receives its power from the RPi through a USB cable.
The battery is a three-celled LiPo battery with a maximum voltage of 12.6V. LiPo batteries
need to be handled with care since they can easily be damaged. The nominal voltage of
a LiPo cell is 3.7V and if the voltage drops below 3.0V the battery can be damaged. To
prevent this, a voltage measurement device must be connected to the battery at all times
when connected to the UAV. This device will signal if the voltage drops below a certain
voltage, which is now set to 3.6V. This limit can be changed with a button on top of
the device. If the voltage alarm goes off when flying, the UAV should immediately be
manually landed and the battery changed [4].
LiPo fires are self-oxidizing and therefore hard to extinguish. Furthermore, hydrogen
fluoride gas and other gases are produced which are both toxic and lethal. LiPo batteries
should never be charged or used unattended. If a battery is swollen, makes a gas-leaking
sound, or is abnormally warm, the battery should be disconnected and safely discarded.
The voltage alarm should always be connected when using the battery.
The batteries should always be stored in LiPo-safe containers/bags when not used or
when charging. Both connections on the battery must be connected to the charger and
the charging current should be set to 1A.

6.1.2 RC Controller

The RC controller is used to manually fly the UAV and can switch between the different
modes. The following modes are available: Manual, Altitude, Position, and Offboard. The
three first modes are manual modes where the user flies the UAV, and in the last mode,
the RPi flies it. When the controller is in manual mode, the roll, pitch, yaw, and thrust are
controlled with the sticks on the RC controller. To simply fly the UAV, the recommended
mode is Altitude mode, where the barometer is used to maintain altitude. If the Pixhawk
receives position data from Qualisys, Position mode is recommended instead, since it holds
the position when both sticks on the controller are centered. There is also an arm switch
that makes the propellers start spinning, as well as a kill switch that immediately cuts
all power and stops the propellers. Before starting the software on the UAV, the RC
controller must be switched on and the user must be ready to switch to manual mode
and take control of the flight. The UAV will not be able to fly if not connected to the
controller. When flying autonomously, the UAV will arm itself and switch to Offboard

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 14

mode when the takeoff service is called. It is also impossible for the UAV to override the
kill switch.
In Figure 2 the RC-controller is shown with all the switches named. The different functions
are mapped as follows:

• 1: Right joystick x-axis: Controls roll

• 1: Right joystick y-axis: Controls pitch

• 2: Left joystick y-axis: Controls throttle

• 2: Left joystick x-axis: Controls yaw

• 3a and 3b: Control flight mode

• 4: Kill switch, immediately cuts power to engines

• 5: ARM switch

• 6: Offboard switch

Figure 2: The RC-controller used to fly the UAV, with markings for all the used switches.

To fly in Altitude mode, switch 3a should be set to its most downward position and 3b
set upwards. To switch to position mode, the 3b should be switched down and 3a can be
in any position.

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 15

6.1.3 Propellers

The four propellers must be mounted correctly according to Figure 3. There are two
propellers designed to spin clockwise and two designed to spin anti-clockwise, and each
pair is to be mounted in the opposing corners.

Figure 3: The UAV with the directions of the propellers marked.

6.1.4 Usage

This section will cover all the necessary steps in launching the UAV when running on
hardware.

• Confirm that all propellers are mounted correctly and that they do not hit any
cables.

• Calibrate Qualisys according to Section 3.

• Place the UAV in Visionen in the origin of the coordinate system, pointing along
the x-axis. Confirm that the UAV is defined in the Qualisys system by making sure
that the markers tagged with UAV pops up on the Qualisys computer.

• Connect the voltage measurement device to the battery and connect the battery to
the UAV.

• Switch on the RC-controller.

• Connect to the RPi from a laptop and create a docker container, compile the code,
and launch the software.

$ ssh uavpi@192 . 1 6 8 . 0 . 2 8
$ cd sbd
$ docker−compose run uav hw

− − In docker − −
$ make bu i ld
$ source i n s t a l l / setup . bash
$ make uav hw

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 16

• If there already exists a container on the RPi where make build has been run and
no code has been changed on the UAV, an existing container can be started instead.

$ ssh uavpi@192 . 1 6 8 . 0 . 2 8
$ docker s t a r t − i uav hw cont

− − In docker − −
$ source i n s t a l l / setup . bash
$ make uav hw

• The UAV will now begin flying if the take-off service is called.

6.2 Simulation

Before simulating the UAV, the image base px4 needs to be built, and the base station
needs to be started according to Section 4.1.2.

6.2.1 Usage

This section will cover all the necessary steps in simulating the UAV.

• Start or create a uav sim docker container according to Section 2.3. In a second
terminal, use the command

docker ps −a

to get the correct name for the container instead of uav sim cont below)

$ cd sbd
$ docker s t a r t − i uav s im cont

− − In docker − −
$ make bu i ld

− − Second termina l − −
$ docker exec − i t uav s im cont bash

− − In docker − −
$ source i n s t a l l / setup . bash
$ make uav sim

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

Search and Rescue - Land 17

References

[1] Pieter Beulque. Automatically connect a Raspberry Pi to a Wifi network. https:
//weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-

wifi-network/. (Visited on 11/28/2022).

[2] Docker Inc. Use containers to Build, Share and Run your applications. https://
www.docker.com/resources/what-container/. (Visited on 12/02/2022).

[3] Qualisys. Calibrating your system. https://docs.qualisys.com/getting-started/
content/getting_started/running_your_qualisys_system/calibrating_your_

system/calibrating_your_system.htm. (Visited on 12/05/2022).

[4] Brian Schneider. A Guide to Understanding LiPo Batteries. https://www.rogershobbycenter.
com/lipoguide. 2021-10-09. (Visited on 11/28/2022).

[5] AB Electronics UK. Serial Port setup in Raspberry Pi OS. https://www.abelectronics.
co.uk/kb/article/1035/serial-port-setup-in-raspberry-pi-os. 2022-11-10.
(Visited on 11/28/2022).

Course name: Reglerteknisk projektkurs, CDIO E-mail: oplandlubber@gmail.com
Project group: OWL Document responsible: Rickard Wretlind
Course code: TSRT10 Author’s E-mail: ricwr413@student.liu.se
Project: Search and Rescue - Land Document name: User Manual.pdf

https://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/
https://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/
https://weworkweplay.com/play/automatically-connect-a-raspberry-pi-to-a-wifi-network/
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://docs.qualisys.com/getting-started/content/getting_started/running_your_qualisys_system/calibrating_your_system/calibrating_your_system.htm
https://docs.qualisys.com/getting-started/content/getting_started/running_your_qualisys_system/calibrating_your_system/calibrating_your_system.htm
https://docs.qualisys.com/getting-started/content/getting_started/running_your_qualisys_system/calibrating_your_system/calibrating_your_system.htm
https://www.rogershobbycenter.com/lipoguide
https://www.rogershobbycenter.com/lipoguide
https://www.abelectronics.co.uk/kb/article/1035/serial-port-setup-in-raspberry-pi-os
https://www.abelectronics.co.uk/kb/article/1035/serial-port-setup-in-raspberry-pi-os

	Introduction
	System Description
	Definitions

	Installation
	Docker
	Raspberry Pi Configuration
	Using Docker Images and Containers
	Base Station
	Rover
	Docker Setup
	Raspberry Pi Configuration

	UAV
	Docker Setup
	Raspberry Pi Configuration

	Qualisys
	Defining bodies

	Base Station
	Mission Setup
	Hardware
	Simulation
	No-fly Zones

	Spawning Distressed Persons
	Controlling Distressed Persons

	Starting the mission
	Restarting mission

	Rover
	Hardware
	Powering and Charging
	RC Controller
	Usage

	Simulation
	Usage

	UAV
	Hardware
	Powering and Charging
	RC Controller
	Propellers
	Usage

	Simulation
	Usage

