Search & Rescue - Underwater

Locating a UUV using a UAS and a hydrophone

Hampus Frick, Alexander Roser, İsac Lundin, David Andersson, Oscar Holm, Ken Dahl, Oskar Philipsson

PROJECT DESCRIPTION

Goal

Find a distressed UUV (Unmanned Underwater Vehicle) transmitting a signal through an emergency pinger.

Approach

Submerge a hydrophone attached to a UAS (Unmanned Aerial System) at different locations in the water area containing the UUV. Then, process the received signal.

SIGNAL PROCESSING

Emergency pinger

Emitted a pulse with a frequency of 45 kHz every 0.7 seconds.

UUV position estimation

SIMULATION

Environment

Sound propagation model

$$y = \frac{s}{||x - p||^{\frac{\beta}{2}}} + e$$

REAL LIFE

The UAS flew autonomously to preselected locations using QGroundControl, submerging the hydrophone in every location. The mission was successful with takeoff, maneuvering and landing being performed gracefully.

RESULTS

Simulation
Using 3 data points
and ML estimation:

Real life

Using 4 data points and ML estimation:

Error: approx. 1m

Error: approx. 25m

LINKÖPING UNIVERSITY Division of Automatic Control

