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1 I N T R O D U C T I O N

In this document the design specification for the project Crazyflies by CrazyCircus-Group can be found. The focus
of this document will be to describe how the system and subsystems in the project are presumed to be created,
implemented and integrated with each other.

1.1 Purpose and Goal

The purpose of the project is to investigate the possibilities of programming drones to perform acrobatic motions.
Acrobatic motions can be flips (rotation around a horizontal axis, in place), loops (rotation around a horizontal axis,
in a circular trajectory), spins (rotation around vertical axis, in place) or other nontrivially implemented or "awe-
inspiring" motions.

The knowledge gained by this project can be used in future educational purposes, and will demonstrate the possibilities
of regulating drones to perform specific motions.

1.2 Concept Descriptions

Table 1 and Table 2 presents definitions of terms and symbols used in this document, respectively.

Table 1: Definition of terms
Term Description
Crazyflie Crazyflie 2.1 drone developed by Bitzcraze [1].
Crazyradio CrazyRadio PA developed by Bitzcraze [2].
GUI Grafical User Interface to interact with the electronics easily.
IMU Inertial Measurement Unit, combination of accelerometers, gyroscopes.
ROS Robot Operating System used to build robot applications.
Visionen Robotics lab at Linköping University.
Qualisys Camera System A motion capture system inside Visionen, used for positioning of drones [3].
Waypoint A specific location or point in space that is used in navigation.
Path A route or course taken by the drone from one waypoint to another.
Trajectory A predefined path with information of coordinates and angles for the drone to follow.
Flip Spinning 360 degrees around its own roll and/or pitch axis in mid air.
Loop Making a 360 degree turn with a given velocity, except it is in the vertical plane instead

of the horizontal. Like a flip but in a circular motion.
Acrobatic trick An acrobatic trick is a visually interesting motion performed by the drone, for example

a loop or a flip.
Acrobatic sequence An acrobatic sequence is a sequence of movements and tricks performed by the drone.
ROS Node / Node A ROS node or just node is an isolated piece of Python or C++ code able to interact

with other nodes and topics.
ROS Topic / Topic A ROS topic or just topic is a channel where information is sent between ROS nodes.

Each topic has a particular format for and information within the messages.
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Subscriber / Subscribes A subscriber is a term for a ROS node which receives information from a ROS topic.
When new information is published to the subscriber it automatically performs some
operation with this data. A subscriber is said to subscribe to the topic which it receives
information from.

Publisher / Publishes A publisher is a term for a ROS node which sends information over a ROS topic. A
publisher is said to publish to the topic which it sends information to.

Table 2: Definition of symbols
Symbol Description
x Position in x-axis.
y Position in y-axis.
z Position in z-axis.

p The vector
[
x y z

]T

ψ Rotation around z-axis (yaw).
θ Rotation around y′-axis (pitch).
ϕ Rotation around x′′-axis (roll).

α The vector
[
ϕ θ ψ

]T

ω Angular velocity vector (α̇).
ȧ Time derivative of a variable a.
ax / ay / az Component of a vector a in the x / y / z -axis.
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2 OV E RV I E W O F T H E S Y S T E M

For a drone to successfully perform acrobatic tricks, a system capable of monitoring the drone, determining actions
and performing them is needed. This makes a complex system, but the entire system does not have to reside within
the drone. The drone and its movements can be monitored by external cameras, the Qualisys system. The calculations
needed to determine actions can be computed with a computer, though the actions must of course be executed by
the drone itself. The entire system can therefore be separated into multiple subsystems, where each subsystem is
responsible for a piece of the process, and that communicates its information with the other subsystems. The system
is divided into the following subsystems:

• Graphical User Interface

• Simulation Environment

• Control System

• Sensor System

– Qualisys

– On Board Sensor System

• Motion Planning System

2.1 Communication

The subsystems will have to communicate with each other. Some subsystems are quite different from each other
and live on different hardware. Therefore, different parts of the code for the communication can be implemented in
different languages (e.g. C/C++ or Python) depending on where it lies, and which subsystem that part is communicating
with. For example, communication with the control system will be on the Crazyflie and will be implemented in C/C++,
while communication with the simulation environment will be on the computer and likely be implemented in Python.
In the later case, the API for Robot Operating System 2 (ROS2) is used. ROS2 is the framework which mainly will
be used to send information between subsystems that are not located at the Crazyflie itself. The flow of information
between the subsystems is visualized in Figure 1.
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Figure 1: The flow of information between subsystems.
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2.1.1 Interface between subsystems

This subsection defines the interface between subsystems. When a new acrobatic sequence or movement is selected
in the GUI, information about the set points needs to be transferred between the GUI and the motion planner. This
transfer of information is specified in Table 3.

Table 3: Package for set point

Set Point
pos angular pos vel angular vel

x y z ϕ θ ψ ẋ ẏ ż ϕ̇ θ̇ ψ̇

This information is saved for each set point created in the the GUI as well as options needed for the planning, such as
look-ahead horizon and sample time. This is illustrated in Table 4 below.

Table 4: Package to Motion planner

Set Point Package
Metadata Setpoints

rate sp1 sp2 . . . spn

In response, the motion planner provides a sequence of full states that constitute the planned trajectory. This trajectory
is saved as a CSV file. Since the motion planner plans inputs for the entire sequence, a time variable is also required.
The structure of a single package can be seen in Table 5.

Table 5: Package from Motion planner

Full state, at time instance t
time position orientation vel angular vel acc

t x y z q1 q2 q3 q4 ẋ ẏ ż ϕ̇ θ̇ ψ̇ ẍ ÿ z̈

A series of packages, encompassing all full states, will be stored as a CSV file. A specific trajectory with a unique ID
can be loaded into the GUI by requesting that particular trajectory ID. The format of the trajectory ID is defined in
Table 6.

Table 6: Request to Motion Planner

Trajectory ID
trajectory_ID

To execute a movement, the file created by the motion planner will be selected and sent as an input to a ROS node.
This will then stream the information for the required duration to the Crazyflie (more exactly to the control system).
Each contains the full-state package and has the form described in Table 7. Additionally, various operational modes,
such as manual operation, simulation, or autonomous operation, can be selected based on the modes defined in Table
8.
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Table 7: Package of full state to CF

Full state
position orientation vel angular vel acc

x y z q1 q2 q3 q4 ẋ ẏ ż ϕ̇ θ̇ ψ̇ ẍ ÿ z̈

Table 8: Content of Operation Modes package

Operation Modes
Stop/Run Simulation/Drone

During operation, data from Qualisys will be streamed by a ROS node to the GUI and to the Crazyflie (more exactly
to the on-board sensor system). The data is sent according to Table 9. The fused data (see Section 4.5.2) is then sent
to the control system, according to Table 10.

Table 9: Package of observed positions

pos angular pos
x y z ϕ θ ψ

Table 10: Package of fused estimate of state from CF

pos vel angular pos angular vel
x y z ẋ ẏ ż ϕ θ ψ ϕ̇ θ̇ ψ̇

2.2 Hardware

The included hardware in the project is:

• 4 Crazyflie 2.1 (Figure 2)

• 1 Crazyradio 2.0 (Figure 3)

• Qualisys motion capture system (a camera is shown in Figure 4)

• Portable computer running Ubuntu 22.04 LTS and ROS2
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Figure 2: Crazyflie 2.1 [1].

Figure 3: Crazyradio 2.0 [2].

Figure 4: Qualisys motion capture camera [3].
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3 M O D E L L I N G O F T H E C R A Z Y F L I E D R O N E

To successfully do acrobatics with a Crazyflie drone, it is important to have a good mathematical model of the Crazyflie.
The model is the foundation for both simulation and control. In this section dynamic models of the Crazyflie, and
methods of validating these models, will be presented.

3.1 Angle Representation

There are plenty of options when choosing a dynamic model of a vehicle, and one aspect of it is that there are many
ways to represent three-dimensional position and rotation of a rigid body. To represent position, the obvious choice
is three-dimensional coordinate systems. We can define a global coordinate system, consisting of three orthogonal
(right-handed) axes x, y and z. We can also define a body fixed coordinate system, consisting of three orthogonal
(right-handed) axes X, Y and Z. Origo, O, of the body fixed coordinate system is set as the body’s center of mass.

3.1.1 Euler Angles

The orientation of the body can be represented by Euler angles, more exactly by Tait-Bryan angles or Proper Euler
angles. In both cases, the complete rotation of the body is described by three sequential rotations around some axes.
For Proper Euler angles, the first and third rotation is around the same axis (which can not be the same axis as for
the second rotation). For Tait-Bryan angles, each of the three rotations are around a different axis. The rotations can
be intrinsic or extrinsic. Intrinsic rotations are rotations around axes in the body-fixed coordinate system XYZ, and
extrinsic rotations are around the fixed global coordinate system xyz. Figure 5 show an example of intrinsic Proper
Euler angles.

Figure 5: Intrinsic Proper Euler angles z-x′-z′′. First, a rotation α around the local (which for the first rotation coincides with
the global) z-axis is made. Then a rotation β around the new temporary local x-axis (denoted N in the figure) is made.
Lastly a rotation γ around the local z-axis is made.

A good choice of the angles above for an aerial vehicle is the intrinsic Tait-Bryan angles z-y′-x′′, meaning the first
rotation yaw is around the z-axis, the second rotation pitch is around the y-axis and the third rotation roll is around the
x-axis. This way of representing the orientation of a rigid body will be used in the project.
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3.1.2 Quaternions

Another way to represent the orientation of a rigid body is with quaternions. Quaternions are an extension of imaginary
numbers to four dimensions. The subset consisting of quaternions of length one (four dimensions reduced to three)
can be used to represent orientation in three dimensions. The representation is not as intuitive as Euler angles, but has
its benefits. Computations using quaternions are cheaper than computations using rotation matrices with Euler angles.
Also, in difference to the Euler angle representation, the quaternion representation does not suffer from Gimbal lock.
Therefore the quaternion representation might be used in the project.

3.2 State Space Model

The following model is based on existing work [4][5]. The external force of gravity on the drone is given by

Fg =

 0
0

−mg

 (1)

where Fg is a force vector in the negative z-direction, m is the weight of the drone and g is the gravity acceleration.
The upward thrust force in Newtons generated by each propeller is given by

fi = CTω2
i , i ∈ {1, 2, 3, 4} (2)

where CT is a thrust coefficient and ωi is the rotation speed of the i-th motor in revolutions per minute. Assuming the
drone is in an upright position, one can sum up the thrust generated from all four propellers, fi, to form a vector Ftot
in the Z-axis,

Ftot =


0
0

4
∑

i=1
fi

 . (3)

However the thrust generated from the propellers are not always in z-axis. The angles of the drone needs to be
accounted for. The transformation matrix that connects the moving frame to the fixed frame can be found in three
steps. First, a rotation around the z-axis by an angle ψ, followed by a rotation around the y-axis by an angle θ, and
finally, a rotation around the x-axis by an angle ϕ. These rotations are defined as three rotation matrices,

Rz(ψ) =

 cosψ sinψ 0
−sinψ cosψ 0

0 0 1

 , Ry(θ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 , Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 −sinϕ cosϕ

 . (4)

The resulting transformation matrix R is defined as

R = Rz(ψ)× Ry(θ)× Rx(ϕ). (5)

Conclusively equations 1, 2, 3 and 5 can be combined using Euler’s first law, which results in

mp̈ = RFtot + Fg, (6)
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where p̈ is the drones acceleration vector in the global coordinate system. The drones translation has now been dealt
with and the next stage is calculating the angular acceleration for the different angles. The momentum of the drone
can be represented as

M =

Mx
My
Mz

 =


d√
2

CT
(
−ω2

1 − ω2
2 + ω2

3 + ω2
4
)

d√
2

CT
(
−ω2

1 + ω2
2 + ω2

3 − ω2
4
)

CD
(
−ω2

1 + ω2
2 − ω2

3 + ω2
4
)

 , (7)

where M is the resulting momentum vector, d denotes the distance from the drones center of gravity to the center of
each motor and CD denotes the aerodynamic drag coefficient. The inertia matrix for the drone can be represented and
hopefully approximated as

I =

 Ixx −Ixy −Ixz
−Ixy Iyy −Iyz
−Ixz −Iyz Izz

 ≈

Ixx 0 0
0 Iyy 0
0 0 Izz

 , (8)

this matrix is in local coordinates and needs to be converted to global coordinates. The relation can be described as

W =

1 0 −sin(θ)
0 cos(ϕ) cos(θ)sin(ϕ)
0 −sin(ϕ) cos(θ)cos(ϕ)

 . (9)

The final the inertia matrix can now be represented as

J = WT × I × W, (10)

and the Coriolis matrix as

C =
d
dt

J − 1
2

d
dα

(
αT · J

)
, α =

ϕ
θ
ψ

 . (11)

The angular acceleration can then be calculated using Euler’s second law and equation 7, 10 and 11,

J · α̈ = (M − C · α̇) . (12)

Lastly the state space vector x =
[
p α ṗ α̇

]T , can be constructed and updated using our known values ṗ and α̇
joint with the calculated values p̈ and α̈. The non linear state space vector is portrayed in equation 13 below,

Ẋ =


ṗ
α̇
p̈
α̈

 =



ẋ
ẏ
ż
ϕ̇
θ̇
ψ̇

RFtot
m +

Fg
m

J−1 · (M − C · α̇)


=



ẋ
ẏ
ż
ϕ̇
θ̇
ψ̇

CT

(
sin(ϕ)sin(ψ)+cos(ϕ)cos(ψ)sin(θ)

)
·(ω2

1+ω2
2+ω2

3+ω2
4))

m
CT

(
cos(ψ)sin(ϕ)−cos(ϕ)sin(ψ)sin(θ)

)
·(ω2

1+ω2
2+ω2

3+ω2
4))

m
−gm+CTcos(ϕ)cos(θ)·(ω2

1+ω2
2+ω2

3+ω2
4))

m
J−1 · (M − C · α̇)



. (13)
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The resulting state space vector is in continuous form and needs to be discretized for application to a real system. There
are several discretization methods that can be used, such as zero-order-hold (ZOH), forward Euler or Runge-Kutta. For
this application the Runge-Kutta method will be used since it offers a trade-off between accuracy and computational
complexity, which allows for more precise solutions compared to simpler methods like Euler’s and ZOH.

3.3 Parameter Estimation and Model Validation

Given a physical model of the Crazyflie with parameters Θ, there are multiple ways to determine these parameters.
One way is to perform physical experiments where the parameters are measured. Such experiments can be to directly
measure the weight of the Crazyflie, or to indirectly measure the components of the inertia matrix by rotating the body
around certain angles by applying certain momentum. This has already been done in other studies of the Crazyflie,
and the hope is to be able to apply these parameters to our model.

Another way to determine the parameters is by collecting data of direct use of the system. That is, by collecting data
of the state of the Crazyflie while it is operating. The hope is then to be able to estimate the parameters using machine
learning techniques. The challenge with this method is instead to properly excite the system, and for the Crazyflie
model this would mean that experiments containing fast movements and flips would have to be designed. Since the
plan is to use existing parameters, these experiments can hopefully be avoided.

Although the plan is to use parameters from other papers, it is still important to validate the obtained model. This is
especially true since the parameters might have to be tweaked a little, since the Crazyflies in the project have active
markers-shields on them and therefore should have somewhat different dynamics than just the Crazyflies themselves.
The data driven method described above might be good enough for validation of the model. One idea is to let the
Crazyflie fly around, giving it known inputs. For example by operating it manually. The states of the Crazyflie during
operation, X̄(t), is to be measured. The Crazyflie is then simulated for the known input and the parameters. The
simulated states, X̃(t; Θ), can then be compared to the measured states, the goal being to get the simulated states as
close to the measured states as possible. In other words, the goal is to get the error ē(t; Θ) = X̃(t; Θ)− X̄(t) close to
zero for all t, or to minimize the cost function

I(Θ) =
∫ t f

t0

ē(t; Θ)2 dt =
∫ t f

t0

(X̃(t; Θ)− X̄(t))2 dt (14)

where t0 and t f is the start time and stop (final) time measuring/simulating. In practise, both measured and simulated
states are given in discrete time tk, k = 1, 2, 3..., n, where n is the number of measurements (and simulated states).
The cost function becomes

J(Θ) =
n

∑
k=1

ē(tk; Θ)2 =
n

∑
k=1

(X̃(tk; Θ)− X̄(tk))
2. (15)

When using this method to find better parameters, this function is to be minimized with respect to the parameters Θ. If
it is possible to find the gradient of J with respect to Θ, gradient-search can be used. The method iteratively search for
more exact parameters. The evaluation of J(Θ) can serve as a measurement of the accuracy of the simulation and the
parameters Θ. This is the primary intent of the method in this case, to validate the parameters. Other loss functions
can be investigated when necessary.
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4 D E S C R I P T I O N O F S U B S Y S T E M S

The following section describes the different subsystems and the implementation plan.

4.1 Graphical User Interface

The Graphical User Interface (GUI) will be where the user controls the Crazyflie drone. Everything from start, take
off and selecting tricks to landing and shutdown will be done via the GUI. More about its functionality can be read
below. The design of the GUI is meant to be user-friendly, however the priority is functionality. The GUI will be
implemented in Rviz, a 3D visualization tool for ROS2.

4.1.1 Functionality

The GUI will have two different frames, one for autonomous mode and one for manual mode. It will be possible to
switch between them in a tab in the top left corner of the GUI. There will also be a third tab named "File" where
it will be possible to save and load acrobatic sequences. The manual mode frame will look and work similar to the
Crazyflie client, where for example the orientation, thrust, battery status and flight data are shown. The autonomous
mode frame will mostly be used to start an acrobatic sequence with a button. There will also be a button to do an
emergency landing as well as a button to do an emergency stop, shutting the drone off completely. There will also be
a button to switch simulation on and off. Starting an acrobatic sequence with the corresponding button together with
simulation being switched on will start the simulation. Lastly there will also be some kind of indicator of the state for
the Crazyflie.

4.1.2 Communication with other subsystems

The GUI serves as the primary interface between the user and the system, responsible for capturing user input and
translating it into actions. Through the GUI, the user can select set points, i.e. states, that the drone should pass
through in its final trajectory. These set points are published on /setpoints and received by the Motion Planning system.

By submit a requested trajectory ID on the topic /traj_ID, the GUI obtains a generated trajectory from the Motion
Planning module on the /trajectory topic. Once a trajectory is received, the GUI can visualize the planned trajectory.

The GUI is also responsible for initiating an additional ROS node called Commander. Commander is an auxiliary
node used when the GUI sends a mission to either the Simulation Environment or the drone. The GUI initiates a
mission by simultaneously publishing a stream of full states on the /mission topic and publishing the desired mode
on the /mode topic. The Commander subscribes to both of these topics and processes the stream of full states
differently depending on the selected mode. The Commander can, for example, choose operational modes such as
manual operation, simulation, or autonomous operation. If simulation is selected, based on the chosen mode, the
Commander forwards the stream of full states by publishing them on the topic /cmdFullState_sim. If autonomous
trajectory following is chosen, the stream of full states is published on the topic /cmdFullState instead.

During the flight, the GUI also subscribes to the /poses and /est_states topic, which displays the current measured
position by Qualisys and the current state estimation by the drone. This data is used for visualization. The system is
also responsible for starting ROS nodes that publish measured positions for the drone’s control system, and Qualisys
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will continuously stream position measurements to the drone until the mission is completed. The ROS topics and
services can be seen in Table 11.

Table 11: GUI interface

Topic/Service Format
Subscribe /trajectory Table 5
Subscribe /poses Table 9
Subscribe /est_states Table 10
Publish /setpoints Table 4
Publish /traj_ID Table 6
Publish /mission Table 7
Publish /mode Table 8

4.1.3 Design

A simple design of what the GUI can possibly look like can be seen in Figure 6.

Figure 6: Design of the Graphical User Interface.
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4.2 Simulation Environment

The simulation for the Crazyflie drone will run in the Gazebo simulation environment. The simulation will be used
to evaluate all the subsystems of the drone, such as the controller, before being deployed on actual hardware. Gazebo
will be used in conjunction with ROS2. This enables the same software to be used in the simulation as in real life, so
called software in the loop. To interact with the Gazebo simulation python scripts will be used together with provided
API’s. The controller used will be identical to the one used on the CF.

Figure 7: Simulation system overview.

Figure 7 illustrates the simulation system in its highest level. This is to show the planned interaction between ROS2
and Gazebo.

4.2.1 Communication with other subsystems

The simulation environment will subscribe to the topic /cmdFullState_sim and, as a result, receive the trajectory as a
stream of full states. The simulation will use the same controller as the drone and the same target setpoints. The ROS
topic is listed in Table 12.

Table 12: Simulation interface

Topic Format
Subscribe /cmdFullState_sim Table 7

4.3 Motion Planning System

By modeling the Crazyflies’ physical characteristics, feasible trajectories can be calculated, along with corresponding
control signals. Substantial work has been done regarding aggressive trajectory planning for Crazyflies [4][5]. Although
the existing work has to be investigated further, some general things regarding the modeling of physical characteristics
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are worth mentioning, see Section 3.2.

To simulate an acrobatic trajectory, such as a loop, a few target states are chosen along the trajectory. For example,
target states are chosen target in a sequence as follows, [x, y, z, ϕ, θ, ψ, ṗ, α̇] = [3, 0, 2, 0, 0, 0, ṗ, α̇], [2, 0, 3, π, 0, 0, ṗ, α̇],
[2, 0, 1, 2π, 0, 0, ṗ, α̇], where ṗ and α̇ are what they need to be in order to achieve the desired positions and angles.
Subsequently, there is an optimization problem intended to result in a trajectory passing through the target states
mentioned above, with a chosen tolerance of accuracy. The final trajectory should be smooth between the target states
and achievable based on the drone’s mechanical characteristics as stated in Equation (13). The optimization problem
is divided into multiple sub-optimization problems, each corresponding to a target state. Each sub-problem optimizes
the trajectory from one target state to the next target state in the sequence. The sub-optimization problem aims to
minimize the cost function,

∑
∀k

[
(Xk − Xtarget)

TQ(Xk − Xtarget) + (UT
k − Uhover)R(Uk − Uhover)

]
subject to Xk+1 = f (Xk, Uk),

Xk ∈ Xc, ∀k

Uk ∈ Uc, ∀k

(16)

where k represents the time instances within the sub-optimization problem, Xk denotes the drone’s state at time
instance k, Xtarget is the target state specific to the sub-optimization problem, Uk represents the control signals applied
to the drone, Uhover is the calculated control signals required for hovering, Q and R are penalty matrices that assign
different penalties to different drone states and control inputs respectively, f represents the state transition function
that describes how the drone’s state evolves from one time instance to the next and Xc and Uc are sets of constraints for
the states and the control input. When an achievable trajectory is calculated, all states and control signals are returned
in every time instance.

However, there are certain aspects of the optimization problem stated in Equation (16) that should be discussed. In the
context of aggressive trajectory planning for Crazyflies, the primary objective is not necessarily to conserve energy,
as implied by the second part of the cost function containing the penalty matrix R. While matrix R might encourage
smoother, more energy-efficient maneuvers, it’s worth exploring whether the penalties on control inputs should be
reduced or set to zero to grant the system more freedom to execute quicker and more aggressive movements.

It’s also important to note that the optimization problem is approached sequentially. Each sub-optimization problem
aims to optimize the trajectory between two consecutive target states. However, this approach introduces a risk of
the drone ending up in unfavorable states due to a lack of foresight. As previously mentioned, ṗ and α̇ are set to
achieve the desired positions and angles. For instance, the velocity may be optimal for reaching one target state,
but not suitable for reaching the subsequent target state. If the optimization problem were solved as a single global
optimization problem, unfavorable states could be eliminated by considering the entire sequence of maneuvers. This
approach might allow the drone to perform even more challenging maneuvers and optimize the trajectory as a whole.
Nevertheless, adopting the global approach comes with potential challenges, such as a greater computational burden or
the risk of encountering such a complex optimization problem that no feasible solution can be found. The optimization
problem needs further investigation within the project.
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4.3.1 Communication with other subsystems

Motion planning communicates with the GUI trough ROS. Motion planning response to the service /setpoints and,
upon a request from the GUI (i.e., when the GUI request on /setpoints), a trajectory is generated. The trajectory is
based on a number of setpoints and metadata as specified in Table 4.

Once a trajectory is generated, it is saved to a CSV file with a unique ID, containing the entire trajectory, including all
full states. This CSV file is stored in a specified database/directory. Each row in the CSV file corresponds to a package
with full states as specified in Table 5. The GUI can request the completed trajectory by request on the topic traj_ID,
which triggers the corresponding trajectory to be published on the topic /trajectory. By request on /trajectory, the GUI
can access the completed trajectory. The ROS services are listed in Table 13.

Table 13: Motion planing interface

Service Format
Subscribe /setpoint Table 4
Subscribe /traj_ID Table 6
Publish /trajectory Table 5

4.4 Control System

The control system will regulate the Crazyflie drone to follow predefined trajectories and be in certain states, in terms
of position and/or velocities.

4.4.1 On board controller

The default controller on the Crazyflie is a cascaded Proportional-Integral-Derivative (PID) controller. Four types of
states are measured and used in the control: position, velocity, attitude, and attitude rate. These are controlled in
cascade, where the innermost and fastest loop controls the attitude rates, resulting in the desired thrusts for roll, pitch,
yaw, and height. These thrusts are handled by the power distribution of the motors, as shown in Figure 8.

Figure 8: Cascaded PID controller.

Desired state setpoints will be sent to the onboard controller. Different types of setpoints can be sent, entering different
parts of the cascaded PID. One can set a high-level setpoint which plans a smooth trajectory from the current state to the
goal position. The goal position will be sent to the position PID as the desired position. One can also send a streaming

TSRT10 Reglerteknisk projektkurs, CDIO
Design Specification

16
CrazyCircus-Group

ellge955@student.liu.se

ellge955@student.liu.se


CrazyCircus December 13, 2023

full-state setpoint. The full-state setpoint is particularly feasible for aggressive maneuvers where feedforward inputs
for acceleration and angular velocity play a vital role in achieving precise tracking performance. Full-state setpoints
can be derived from trajectory parameterizations obtained from piecewise polynomials.

The goal is to take the states returned from the motion planning system described in section 4.3 and format them to be
sent as a streaming full-state setpoint to the cascaded PID controller. This will enable the controller to handle drone
control during acrobatic maneuvers.

4.4.2 Communication with other subsystems

The controller requires knowledge of the current position and the target state to calculate a control signal. During
real-time flight, the controller runs on the Crazyflie and receives its current measured state directly from the on board
sensor system, see Section 4.5.2.

While following a trajectory, the control system also receives a continuous stream of full states by subscribing to the
topic /cmdFullState. This stream provides the current reference position. The ROS topics can be found in Table 14.

Table 14: Controller interface

Topic Format
Subscribe /cmdFullState Table 7

4.5 Sensor System

The sensor system is split into two parts, the Qualisys system (the outer sensor system) and the on board sensor system
(the inner sensor system).

4.5.1 Qualisys

The system that will be used for measuring the position of the drone is a Qualisys Motion Capture system. The
Qualisys system used in Visionen uses 20 Qualisys IR cameras. The Crazyflie is equipped with active IR markers
which emit LED light. These markers are designed to be detected by the Qualisys cameras and the Crazyflie can, if
needed, also be equipped with passive markers. The passive markers work by reflecting IR flashes from the cameras
which can then be detected in order to estimate position and orientation. The Qualisys system is capable of capturing
low-latency 6DOF positioning data in real-time to estimate the state of the Crazyflie. The data will be streamed in real
time using the Qualisys Track Manger software and published on the topic /poses. The measured position is received
by the GUI as well as the on board control system on the Crazyflie by subscribing on /poses. There are two ways
to obtain the pose from the Qualisys. One with a rotation matrix and the other one that represents the orientation as
Euler angles. Both have their advantages and disadvantages. Euler angles are intuitive and provides uncomplicated
representation of orientation, however they have problem with singularity. Rotation matrices are a better choice for
computational purposes since it does not have problems with singularity.

The Qualisys-node will publish its measured positions to a ROS topic according to Table 15.
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Table 15: Qualisys interface

Topic Format
Subscribe /poses Table 9

4.5.2 On Board Sensor System

The on board sensor system will fetch measurements from the Inertial Measurement Unit (IMU) located on the
Crazyflie. It will fuse the received position estimate (acquired from Qualisys through /poses) with the sensor data
from the IMU to make a final estimate of its state. It will then send that estimate directly to the control system, and to
the GUI for visualization by submitting on the topic /est_states with 1 Hz. The ROS topics can be found in Table 16.

Table 16: On board sensor system interface

Topic Format
Subscribe /poses Table 9
Publish /est_states Table 10

4.5.3 Sensor Fusion

Qualisys is an exceptionally accurate and reliable system, and therefore the plan is to prioritize, or have greater trust,
for these estimates in the sensor fusion. However, in situations where the data from Qualisys is likely to be flawed
the IMU data will be prioritized. This can for example be when the Crazyflie is upside down, since the Qualisys
cameras are placed high and the markers could be out of view from the cameras. The filter that will be responsible
for the fusion of the IMU data and the state estimation from the Qualisys system is an Extended Kalman filter. The
extended Kalman filter is an improved version of the traditional Kalman filter that can handle non-linear filtering. The
extended Kalman filter linearize non-linear functions using taylor series around the mean. The IMU data consists of
acceleration and angular velocity which will be used together with a dynamic model of the drone to get estimated
position and orientation which can then be fused with the measurements from the Qualisys system. The procedure is
shown in Figure 9.
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Figure 9: The sensor fusion process.
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5 F U RT H E R D E V E L O P M E N T

Since the project focuses on one single Crazyflie drone, further development could be made by extending the project
with several drones. It could for example be multiple drones doing synchronized flips and loops as part of an acrobatic
performance.
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