

Test Plan

CrazyCircus-Group

December 13, 2023

Version 1.0

Status

Reviewed	Albin Helsing	2023-10-03
Approved		

Project Identity

Group E-mail: ellge955@student.liu.se

Homepage: http://www.liu.se/

Orderer: Anton Kullberg, Reglerteknik/LiU

Phone: -

E-mail: anton.kullberg@liu.se

Customer: Daniel Axehill, Reglerteknik/LiU

Phone: +46 13 28 40 42

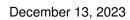
E-mail: daniel.axehill@liu.se

Supervisor: Joel Nilsson, Reglerteknik/LiU

Phone: -

E-mail: joel.nilsson@liu.se

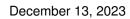
Course Responsible: Daniel Axehill, Reglerteknik/LiU


Phone: +46 13 28 40 42

E-mail: daniel.axehill@liu.se

Project participants

Name	Responsibility	E-mail
Elliot Gestrin	Project manager (PM)	ellge955@student.liu.se
Martin Agebjär	Control technology (CT)	marag492@student.liu.se
Hugo Asplund	Hardware (HW)	hugas433@student.liu.se
Marcus Filipsson	Simulation (SIM)	marfi245@student.liu.se
Alvin Gustavsson Vester	Design (DES)	alvgu648@student.liu.se
Albin Helsing	Testing (TEST)	albhe896@student.liu.se
Tomas Röjder	Software (SW)	tomro614@student.liu.se
Adam Simon	GUI/Information (GUI/I)	adasi503@student.liu.se
Axel Stockhaus	Documentation (DOC)	axest416@student.liu.se



1		duction 1
	1.1	Test Structure
	1.2	Concept Descriptions
2	Tests	2
	2.1	Test of the GUI
	2.2	Test of the Sensor System Requirements
	2.3	Test of the Safety requirements
	2.4	Test of the Control System requirements
	2.5	Test of the Motion planning requirements
	2.6	Test of communication system
	2.7	Test of information requieremtns
	2.8	Test of project quality requirements
	2.9	Test of simulation system
	2.10	Test of acrobatics

DOCUMENT HISTORY

Version	Date	Changes made	Made by	Reviewed
0.1	2023-10-03	First version	CrazyCircus-Group	Albin Helsing
1.0	2023-11-28	Version 1.0	CrazyCircus-Group	Axel Stockhaus

CrazyCircus

1 INTRODUCTION

In this document all the tests needed to verify the requirements are presented. For each test it's specified which requirements are tested, which resources are needed and the procedure of the test.

1.1 Test Structure

There will be a section for every subsystem and the tests in each section will correspond to requirements on the specific subsystem. If a test fails or can not be tested at all, either further development is needed or a renegotiation of the requirement needs to be done together with the orderer.

1.2 Concept Descriptions

Table 1 presents definitions of terms used in this document.

Table 1: Definition of terms

Concept	Description
Crazyflie	Crazyflie 2.1 drone developed by Bitzcraze [1].
Crazyradio	CrazyRadio PA developed by Bitzcraze [2].
GUI	Grafical User Interface to interact with the electronics easily.
IMU	Inertial Measurement Unit, combination of accelerometers, gyroscopes.
ROS	Robot Operating System used to build robot applications.
Visionen	Robotics lab at Linköping University.
Qualisys Camera System	A motion capture system inside Visionen, used for positioning of drones
	[3].
Waypoint	A specific location or point in space that is used in navigation.
Path	A route or course taken by the drone from one waypoint to another.
Trajectory	A predefined path with information of coordinates and angles for the drone
	to follow.
Flip	Spinning 360 degrees around its own roll and/or pitch axis in mid air.
Loop	Making a 360 degree turn with a given velocity, except it is in the vertical
	plane instead of the horizontal. Like a flip but in a circular motion.
Acrobatic trick	An acrobatic trick is a visually interesting motion performed by the drone,
	for example a loop or a flip.
Acrobatic sequence	An acrobatic sequence is a sequence of movements and tricks performed by
	the drone.

2 TESTS

In this section, all the tests to validate whether the set requirements stated in the requirement specification can be met will be stated.

2.1 Test of the GUI

In this section, all the tests regarding testing of the requirement for the GUI is stated.

Table 2: Test cases for the GUI requirements.

Test	Requirements Tested	Resources	Description	Priority
1	16	Computer	Test passed when the GUI is displayed.	1
			Procedure: The test will be done by	
			launching the GUI from the terminal with	
			ROS2 commands.	
2	17, 18, 22	Computer,	Test passed when the emergency land	1,2,3
		Visionen,	button, the emergency stop button and the	
		Crazyflie	start drone button makes the drone do these	
			commands.	
			Procedure: Open up the GUI, make sure	
			that we're connected to the Visionen Wifi	
			and that the Crazyflie is connected to the	
			computer. Then press the button tested.	
			Notice that the emergency land button and	
			the emergency stop button requires that the	
			Crazyflie is already in the air.	
3	19, 20	Computer,	Test passed when the acrobatic sequence is	1,2
		Visionen,	done both in simulation and in Visionen.	
		Crazyflie	Procedure: Open up the GUI, make	
			sure that we're connected to the Visionen	
			Wifi and that the Crazyflie is connected	
			to the computer. Select which acrobatic	
			sequence that should be done. Then start	
			the acrobatic sequence in simulation. After	
			that start the acrobatic sequence in visionen.	
			Continued on	next page

CrazyCircus

Table 2 – continued from previous page

Test	Requirements Tested	Resources	Description	Priority
4	21	Computer	Test passed when an acrobatic sequence can	3
			be designed in the GUI and saved.	
			Procedure: Open up the GUI and start	
			the design process (probably by pressing a	
			button). Press some points in the coordinate	
			system were you want the Crazyflie to fly.	
			Then use Oliver's script to calculate the	
			trajectory and states. At last save the result	
			in a file.	
5	23	Computer,	Test passed when we can control the	1
		Crazyflie	Crazyflie manually via the GUI.	
			Procedure: Open up the GUI and go the	
			manual mode. Make sure the Crazyflie	
			is connected to the computer and that a	
			external controller is connected to the	
			computer. Then control the Crazyflie with	
			the external controller.	
6	24	Computer	Test passed when an acrobatic sequence can	2
			be loaded into the GUI.	
			Procedure: Open up the GUI, press the	
			load button in the top left tab in the GUI	
			and select an acrobatic sequence to load.	
7	25	Computer,	Test passed when multiple Crazyflies can be	3
		Visionen,	controlled from the GUI.	
		Crazyflie	Procedure: Open up the GUI, make sure	
			that we're connected to the Visionen Wifi.	
			Connect multiple Crazyflies. Start a simple	
			mission where the Crazyflies hovers for a	
			few seconds and then lands again.	
8	26	Computer,	Test passed when the state such as position	1
		Visionen,	and orientation of the Crazyflie is displayed	
		Crazyflie	in the GUI.	
			Procedure: Open up the GUI, make	
			sure that the computer is connected to	
			the Visionen Wifi and that the Crazyflie	
			is connected to the computer. Place the	
			Crazyflie in several different position and	
			orientation in Visionen and check that the	
			GUI displays the correct state.	
			Continued on	next page

Table 2 – continued from previous page

Test	Requirements Tested	Resources	Description	Priority
9	27,28	Computer,	Test passed when the planned trajectory	1
		Visionen,	and the trajectory of the flying Crazyflie are	
		Crazyflie	visualized in the GUI.	
			Procedure: Open up the GUI, make	
			sure that the computer is connected to	
			the Visionen Wifi and that the Crazyflie	
			is connected to the computer. Start an	
			acrobatic sequence and check that the	
			planned trajectory and the trajectory of the	
			flying Crazyflie are visualized in the GUI.	

2.2 Test of the Sensor System Requirements

In this section, all the tests regarding testing of the requirement for the sensor system is stated.

Table 3: Test cases for the sensor system requirements.

Test	Requirements Tested	Resources	Description	Priority
10	53	Qualisys Track Manager,	Test passed if the positioning and	1
		Qualisys Camera system,	orientation data is the same in the GUI	
		Computer, Crazyflie	as in QTM	
		Visionen	Procedure: Start Qualisys Track	
			Manager, place the crazyflie drone inside	
			visionen. When the drone has been placed	
			inside visionen start the GUI. Run a	
			simple script.	
11	54	Qualisys Track Manager,	Test is passed when the estimated position	1
		Qualisys Camera system,	is less than 5 cm from the ground truth.	
		Computer, Crazyflie	Procedure: Start Qualisys Track	
		Visionen	Manager, place the crazyflie drone inside	
			visionen besides a measuring tape. Run a	
			script that tells the drone to fly a specified	
			distance in the direction of the measuring	
			tape. Compare the distance traveled with	
			the estimated position of the drone.	

2.3 Test of the Safety requirements

In this section, all the tests regarding testing of the requirement for the safety is stated.

Table 4: Test cases for the safety requirements.

Test	Requirements Tested	Resources	Description	Priority
12	64	Qualisys Track Manager,	Test passed if the drone shuts of when the	3
		Qualisys Camera system,	emergency button is pressed.	
		Computer, Crazyflie	Procedure: Start Qualisys Track	
		Visionen	Manager, place the crazyflie drone inside	
			visionen. Run a simple script for the	
			drone to take off. When the drone is in	
			the air, press the emergency button in The	
			GUI.	
13	65	Qualisys Track Manager,	Test passed if the drone return to the	1
		Qualisys Camera system,	starting z-position in a controlled	
		Computer, Crazyflie	sequence when the emergency landing	
		Visionen	button is pressed.	
			Procedure: Start Qualisys Track	
			Manager, place the crazyflie drone inside	
			visionen. Run a simple script for the	
			drone to take off. When the drone is in	
			the air press the emergency land button in	
			The GUI.	
14	66	Qualisys Track Manager,	Test passed if the drone return to the	3
		Qualisys Camera system,	starting z-position when the battery level	
		Computer, Crazyflie	reaches 3.2V.	
		Visionen	Procedure: Start Qualisys Track	
			Manager, place the crazyflie drone inside	
			visionen. Run a simple script for the	
			drone to take off. Let the crazyflie hover	
			until the battery level reaches 3.2V.	
15	67	Qualisys Track Manager,	Test passed if the crazyflie makes an	3
		Qualisys Camera system,	emergency landing if it loses connection	
		Computer, Crazyflie	to the computer.	
		Visionen	Procedure: Start Qualisys Track	
			Manager, place the crazyflie drone inside	
			visionen. Run a simple script for the	
			drone to take off. Let the crazyflie hover	
			and then disconnect the crazyradio. Continued on	

Table 4 – continued from previous page

Test	Requirements Tested	Resources	Description	Priority
16	68	Qualisys Track Manager,	Test passed if the crazyflie returns to the	3
		Qualisys Camera system,	starting z-position if it is out of sight for	
		Computer, Crazyflie,	the qualisys cameras.	
		Visionen	Procedure: Start Qualisys Track	
			Manager, place the crazyflie drone inside	
			visionen. Run a simple script for the	
			drone to take off. Block the markers on	
			the crazyflie from the cameras using a	
			cardboard box.	

2.4 Test of the Control System requirements

In this section, all the tests regarding testing of the requirements for the controll system is stated.

Table 5: Test cases for Control System requirements

Test	Requirements Tested	Resources	Description	Priority
17	34, 36, 38	Computer, Crazyflie	Test passed if the drone can fly	1
			autonomously in all directions	
			independent of yaw angle.	
			Procedure: Start computer, place	
			crazyflie drone inside visionen. Run a	
			script for the drone to take off and fly in	
			all directions.	
18	35	Computer, Crazyflie	Test passed if the drone can rotate around	1
			its yaw angle.	
			Procedure: Start computer, place	
			crazyflie drone inside visionen. Run a	
			script for the drone to take off and rotate	
			around it's z-axis.	
19	37	Computer, Crazyflie	Test passed if the drone can fly in manual	1
			mode.	
			Procedure: Start computer, place	
			crazyflie drone inside visionen. Turn on	
			manual mode in the GUI and fly around.	
20	39	Qualisys Track Manager,	Test passed if multiple drones can fly	3
		Qualisys Camera system,	autonomously and synchronised.	
		Computer, Crazyflies	Procedure: Start computer. start Qualisys	
			Track Manager, place the crazyflie drones	
			inside visionen. Run a script for the	
			drones to take off and fly synchronised.	
21	40	Computer	Test passed if changing the parameters for	1
			the controller is possible.	
			Procedure: Start computer, change	
			the parameters of the controller and	
			simulate the flight inside the simulation	
			environment.	
	•		Continued on	next page

Table 5 – continued from previous page

CrazyCircus

Test	Requirements Tested	Resources	Description	Priority	
22	41, 45	Qualisys Track Manager,	Test passed if the drone follows a given	1	
		Qualisys Camera system,	trajectory when not performing an		
		Computer, Crazyflie	acrobatic trick and hover without respect		
			to the yaw, pitch and roll with a maximal		
			deviation of 10 cm.		
			Procedure: Start computer, start Qualisys		
			Track Manager, place the crazyflie drone		
			inside visionen. Run a script for the drone		
			to take off, fly a trajectory and hover.		
			Compare real-time visualisation and		
			planned trajectory.		
23	42	Qualisys Track Manager,	Test passed if the drone follows a given	2	
		Qualisys Camera system,	trajectory when performing an acrobatic		
		Computer, Crazyflie	trick without respect to the yaw, pitch and		
			roll with a maximal deviation of 20 cm.		
			Procedure: Start computer, start Qualisys		
			Track Manager, place the crazyflie drone		
			inside visionen. Run a script for the		
			drone to take off, fly an acrobatic trick.		
			Compare real-time visualisation and		
			planned trajectory.		
24	43	Qualisys Track Manager,	Test passed if the drone follows a given	1	
		Qualisys Camera system,	trajectory when not performing an		
		Computer, Crazyflie	acrobatic trick with respect to the yaw,		
			pitch and roll with a maximal deviation of		
			10 degrees.		
			Procedure: Start computer, start Qualisys		
			Track Manager, place the crazyflie drone		
			inside visionen. Run a script for the		
			drone to take off, fly an acrobatic trick.		
			Compare real-time visualisation and		
			planned trajectory.		
	Continued on next page				

Table 5 – continued from previous page

Test	Requirements Tested	Resources	Description	Priority
25	44	Qualisys Track Manager,	Test passed if the drone follows a given	2
		Qualisys Camera system,	trajectory when performing an acrobatic	
		Computer, Crazyflie	trick with respect to the yaw, pitch and	
			roll with a maximal deviation of 30	
			degrees.	
			Procedure: Start computer, start Qualisys	
			Track Manager, place the crazyflie drone	
			inside visionen. Run a script for the	
			drone to take off, fly an acrobatic trick.	
			Compare real-time visualisation and	
			planned trajectory.	
26	46	Qualisys Track Manager,	Test passed if when multiple drones are	3
		Qualisys Camera system,	used there is synchronization between	
		Computer, Crazyflies	them.	
			Procedure: Start computer, start Qualisys	
			Track Manager, place the crazyflie drones	
			inside visionen. Run a script for the	
			drones to take off. Check if there is	
			synchronization between them.	
27	47, 48, 49, 50, 51	Computer	Requirements passed if the tests -2, -3, -4	1,2
			and -5 can be reproduced and approved in	
			simulation.	
			Procedure: Perform the test for tests -	
			2, -3, -4 or -5 respectively, but instead of	
			placing a drone in Visionen a simulated	
			environment is used.	

2.5 Test of the Motion planning requirements

In this section, all the tests regarding testing of the requirement for the motion planning is stated.

Table 6: Test cases for the motion planning requirements.

Test	Requirements Tested	Resources	Description	Priority
28	32	Computer, GUI	Test passed if planner is able to plan a	1
		and planning software	motion trajectory given positions from	
			GUI.	
			Procedure: Start Computer and input	
			movement into GUI. Run planner script	
			with the given input. When planner has	
			finished, view the planned trajectory in	
			visualisation.	
29	33	Computer, GUI	Test passed if planner is able to plan	1
		and planning software	a motion trajectory given an acrobatic	
			sequence from GUI.	
			Procedure: Start Computer and input	
			acrobatic sequence into GUI. Run planner	
			script with the given acrobatic sequence.	
			When planner has finished, view the	
			planned trajectory in visualisation.	

2.6 Test of communication system

In this section, all the tests regarding testing of the requirement for the communication system is stated.

Table 7: Test cases for the communication system requirements.

Test	Requirements Tested	Resources	Description	Priority
30	52	Computer, Visionen,	Test passed when drone position is shown	1
		Crazyflie	in RViz visualization tool.	
			Procedure: Open the CrazyCircus	
			project in Qualisys Track Manager on	
			the Visionen computer. Turn on the	
			drone and place it in the middle of the	
			Visionen. On the computer change to the	
			visionen wifi. Enter the container with	
			the script ./run.sh. Build system with	
			./colcon_build.sh from root. Source the	
			Ros2 setup script with the command:	
			source ros2_ws/install/setup.bash. Launch	
			visualization tool in RViz with ros2	
			launch crazyflie launch.py. Verify the	
			drone is shown in the visualization tool	
			confirming the Ros2 communication	
			between Qualisys and the computer is	
			working.	

2.7 Test of information requieremtns

In this section, all the tests regarding testing of the requirement for the information is stated.

Table 8: Test cases for the informaion requirements.

Test	Requirements Tested	Resources	Description	Priority
31	55	Computer	Test passed when appropriate link directs	1
			to website.	
			Procedure: Enter the appropriate link	
			in an arbitrary web browser. Navigate	
			around the website confirming buttons	
			and links are working.	
32	56	Computer	Test passed when documents can be	1
			downloaded from the website.	
			Procedure: Enter the appropriate link to	
			the website in an arbitrary web browser.	
			Navigate to the document page and	
			download each document. When all the	
			documents have been downloaded and	
			viewed the test is passed.	
33	57, 58	Computer	Test passed when video can be viewed as	1
			a YouTube video.	
			Procedure: Enter the appropriate link to	
			the website in an arbitrary web browser.	
			Navigate to linked YouTube video and	
			press play. Test is passed when the video	
			is playing.	
34	59	-	Test passed when poster exist in physical	1
			format.	

2.8 Test of project quality requirements

In this section, all the tests regarding testing of the requirement for the project quality is stated.

Table 9: Project quality requirements procedure

Test	Requirements Tested	Resources	Description	Priority
35	60	Computer	The test is passed if the code follows	1
			Google's coding standard, and the project	
			documentation follows LIPS document	
			standards.	
			Procedure : Review all code that is push	
			to the projects Gitlab repository. Review	
			all project documentation.	

2.9 Test of simulation system

Table 10: Simulation system test procedure

Test	Requirements Tested	Resources	Description	Priority
36	29, 30	Computer, Crazyflie	The test is passed if the data from the real	1,2
			world agrees with the data gatherd from	
			the simulation.	
			Procedure : Conceive various test	
			scenarios for the drone to perform in	
			visionen. Performe the flight tests, and	
			gather the data. Recreate the same test in	
			the simulation environment.	
37	31	Computer, Crazyflie	The test is passed if the 3D model of the	3
			simulation is a accurate representation of	
			the crazyflie.	
			Procedure : Load the drone model in the	
			simulation environment.	

2.10 Test of acrobatics

Table 11: Acrobatics tests

Test	Requirements Tested	Resources	Description	Priority
38	2, 3, 4, 6	Qualisys Track Manager,	The test is passed if the drone is able	1,2,3
		Qualisys Camera system,	to perform the acrobatic trick that is	
		Computer, Crazyflie	described in the related requirement.	
			Procedure : Set up the drone and Qualisys	
			in Visionen and start the GUI. Start the	
			acrobatic trick. Observe that the drone	
			is able to perform the acrobatic trick	
			according to its description.	
39	5	Qualisys Track Manager,	The test is passed if the drone can do a	3
		Qualisys Camera system,	flying start.	
		Computer, Crazyflie	Procedure : Set up the drone and Qualisys	
			in Visionen and start the GUI. Start flying	
			start. Throw the drone out in the room and	
			observe that the drone takes control and	
			stabilizes itself.	
40	7, 8, 9, 10, 11	Computer	The test is passed if the drone in	1,2,3
		_	simulation is able to perform the acrobatic	
			trick that is described in the related	
			requirement.	
			Procedure : Start the simulation. Start the	
			acrobatic trick. Observe that the drone in	
			simulation is able to perform the acrobatic	
			trick according to its description.	
41	12	Computer	The test is passed if it is possible to save	2
		_	built up sequences.	
			Procedure: Start the GUI. Build an	
			acrobatic sequence. Save the sequence.	
42	13	Computer	The test is passed if it is possible to load	2
		-	and run previously saved sequences.	
			Procedure : Start the GUI. Load a	
			previously saved acrobatic sequence. Run	
			the acrobatic sequence.	
	1		Continued on	next page

Table 11 – continued from previous page

Test	Requirements Tested	Resources	Description	Priority
43	14	Qualisys Track Manager,	The test is passed if multiple drones are	3
		Qualisys Camera system,	able to perform acrobatic sequences at the	
		Computer, Crazyflies	same time.	
			Procedure: Set up multiple drones (at	
			least two) and Qualisys in Visionen	
			and start the GUI. Run an acrobatic	
			sequence. Observe that the drones are	
			able to perform the acrobatic sequence	
			individually at the same time.	
44	15	Qualisys Track Manager,	The test is passed if multiple drones are	3
		Qualisys Camera system,	able to perform synchronized acrobatic	
		Computer, Crazyflies	sequences.	
			Procedure: Set up multiple drones (at	
			least two) and Qualisys in Visionen	
			and start the GUI. Run a synchronized	
			acrobatic sequence. Observe that the	
			drones are able to perform the acrobatic	
			sequence synchronized.	

REFERENCES

- [1] Bitcraze, "Crazyflie 2.1," https://www.bitcraze.io/products/crazyflie-2-1/, 2023, [Online; accessed September 12, 2023].
- [2] —, "Crazyradio pa," https://www.bitcraze.io/products/crazyradio-pa/, 2023, [Online; accessed September 12, 2023].
- [3] Qualisys, "Motion capture camera for mri scanners," https://www.qualisys.com/cameras/oqus-mri/, 2023, [Online; accessed September 20, 2023].